600 k (Kilograms to grams is:
600000 g (grams)
Explanation:
A sequence is a list of numbers.
A <em>geometric</em> sequence is a list of numbers such that the ratio of each number to the one before it is the same. The common ratio can be any non-zero value.
<u>Examples</u>
- 1, 2, 4, 8, ... common ratio is 2
- 27, 9, 3, 1, ... common ratio is 1/3
- 6, -24, 96, -384, ... common ratio is -4
___
<u>General Term</u>
Terms of a sequence are numbered starting with 1. We sometimes use the symbol a(n) or an to refer to the n-th term. The general term of a geometric sequence, a(n), can be described by the formula ...
a(n) = a(1)×r^(n-1) . . . . . n-th term of a geometric sequence
where a(1) is the first term, and r is the common ratio. The above example sequences have the formulas ...
- a(n) = 2^(n -1)
- a(n) = 27×(1/3)^(n -1)
- a(n) = 6×(-4)^(n -1)
You can see that these formulas are exponential in nature.
__
<u>Sum of Terms</u>
Another useful formula for geometric sequences is the formula for the sum of n terms.
S(n) = a(1)×(r^n -1)/(r -1) . . . . . sum of n terms of a geometric sequence
When |r| < 1, the sum converges as n approaches infinity. The infinite sum is ...
S = a(1)/(1-r)
Recall the sum identity for cosine:
cos(a + b) = cos(a) cos(b) - sin(a) sin(b)
so that
cos(a + b) = 12/13 cos(a) - 8/17 sin(b)
Since both a and b terminate in the first quadrant, we know that both cos(a) and sin(b) are positive. Then using the Pythagorean identity,
cos²(a) + sin²(a) = 1 ⇒ cos(a) = √(1 - sin²(a)) = 15/17
cos²(b) + sin²(b) = 1 ⇒ sin(b) = √(1 - cos²(b)) = 5/13
Then
cos(a + b) = 12/13 • 15/17 - 8/17 • 5/13 = 140/221
Answer:
300. In this case, it's very easy to do this percentage inflation. Since 20 is a multiple of 100, and we want to know the 100%, you just multiply the 20 by 5 to make it 100. Along with this, you multiply the 60 by 5 as well, which gives you 300.
A) the missing degree is 166
b) the missing degree is 142
c)the missing degree is 160
I do hope I helped you in a way! If I am incorrect I apologize.