1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
11

The gravitational force of a star on an orbiting planet 1 is f1. planet 2, which is three times as massive as planet 1 and orbit

s at twice the distance from the star, experiences gravitational force f2. part a what is the ratio f2f1? you can ignore the gravitational force between the two planets.

Physics
2 answers:
RideAnS [48]3 years ago
7 0

The ratio F₂ : F₁ = 3 : 4

\texttt{ }

<h3>Further explanation</h3>

Newton's gravitational law states that the force of attraction between two objects can be formulated as follows:

\large {\boxed {F = G \frac{m_1 ~ m_2}{R^2}} }

<em>F = Gravitational Force ( Newton )</em>

<em>G = Gravitational Constant ( 6.67 × 10⁻¹¹ Nm² / kg² )</em>

<em>m = Object's Mass ( kg )</em>

<em>R = Distance Between Objects ( m )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

Gravitational force on planet 1 = F₁

Gravitational force on planet 2 = F₂

mass of planet 1 = m₁

mass of planet 2 = m₂ = 3m₁

distance between planet 1 and star = R₁

distance between planet 2 and star = R₂ = 2R₁

<u>Asked:</u>

ratio of force = F₂ : F₁ = ?

<u>Solution:</u>

F_2 : F_1 = G \frac{ M m_2} { (R_2)^2 } : G \frac{ M m_1} { (R_1)^2 }

F_2 : F_1 = \frac{m_2} { (R_2)^2 } : \frac{ m_1} { (R_1)^2 }

F_2 : F_1 = \frac{3m_1} { (2R_1)^2 } : \frac{ m_1} { (R_1)^2 }

F_2 : F_1 = \frac{3} { 4 } : 1

\boxed{F_2 : F_1 = 3 : 4}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Gravitational Fields

Margaret [11]3 years ago
3 0

Let  us consider two bodies having masses m and m' respectively.

Let they are  separated by a distance of r from each other.

As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -  F = G\frac{mm'}{r^{2} }   where G is the gravitational force constant.

From the above we see that F ∝ mm' and F\alpha \frac{1}{r^{2} }

Let the orbital radius of planet  A is r_{1}  = r and mass of planet is m_{1}.

Let the mass of central star is m .

Hence the gravitational force for planet A  is f_{1} =G \frac{m_{1}*m }{r^{2} }

For planet B the orbital radius  r_{2} =2r_{1} and mass m_{2} = 3 m_{1}

Hence the gravitational force f_{2} =G\frac{m m_{2} }{r^{2} }

                                                 f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }

                                                 = \frac{3}{4} G\frac{mm_{1} }{r_{1} ^{2} }

Hence the ratio is  \frac{f_{2} }{f_{1} } = \frac{\frac{3}{4}G mm_{1/r_{1} ^2}  }{Gmm_{1}/r_{1} ^2 }

                                      =\frac{3}{4}     [ ans]


                                                 

                           

You might be interested in
A 10.0-kg mass is placed on a 25.0o incline and friction keeps it from sliding. The coefficient of static friction in this case
vovangra [49]

The frictional force while the mass is sliding will be 46.2 N.

<h3>What is friction force?</h3>

Opposition forces on the surface cause heat loss during the motion of an object known as the friction force.

Given data:

m(mass)= 10.0-kg

Θ (Inclination angle)=25.0o

Coefficient of sliding friction,\rm \mu_k=0.520

Coefficient of static friction,\rm  \mu_s=0.520

The friction force, F=?

Resolve the force in the inclined plane;

\rm F=\mu_s mg cos25^0 \\\\ F=0.520 \times 10 \times 9.81 \times  cos 25 ^0 \\\\ F= 46.2 \ N

Hence, the frictional force while the mass is sliding will be 46.2 N.

To know more about friction force refer to the link;

brainly.com/question/1714663

#SPJ1

5 0
2 years ago
An elevator cable breaks when a 925-kg elevator is 28.5 m above the top of a huge spring Ak = 8.00 * 104 N????mB at the bottom o
rosijanka [135]

Answer:

a) = 258352.5J

b) = 23.63 m/s

c) = 1.8m

Explanation:

Data;

Mass = 925kg

Distance (s) = 28.5m

Force constant (k) = 8.0*10⁴ N/m

g = 9.8 m/s²

a) = work = force * distance

But force = mass * acceleration

Force = 925 * 9.8 = 9065N

Work = F * s = 9065 * 28.5 = 258352.5J

b) acceleration (a) = (v² - u²) / 2s

a = v² / 2s

v² = a * 2s

v² = 9.8 * (2 * 28.5)

v² = 9.8 * 57

v² = 558.6

v = √(558.6)

V = 23.63 m/s

C). The work stops when the work done to raise the spring equals the work done to stop it by the spring

W = ½kx²

258352.5 = ½ * 8.0*10⁴ * x²

(2 * 258352.5) = 8.0*10⁴x²

516705 = 8.0*10⁴x²

X² = 516705 / 8.0*10⁴

X² = 6.46

X = √(6.46)

X = 2.54m

The compression was about 2.54m

3 0
3 years ago
Read 2 more answers
Who is the first president of China ?
Kitty [74]

The President is Xi Jinping

6 0
3 years ago
Read 2 more answers
The line of latitude that is zero degrees latitude is the
Nuetrik [128]

Answer:

Equator

Explanation:

The equator is the line of latitude that separates the earth into the northern and southern hemisphere.Its magnitude is 0 degrees latitude. The equator and other lines of latitude are parallel to each other. The lines of longitude which is 0 degrees is known as the Greenwich meridian. The longitudinal lines however are not parallel as they converge at the poles.

7 0
2 years ago
Q: A: Sarah and Maria made a telephone using two cans and a string. It was a very long string. Maria went upstairs in her house
GrogVix [38]
This contraption is a lot of fun, and you really should try it
some time.

The sound waves move from one can to the other one 
by traveling through the string.
3 0
3 years ago
Read 2 more answers
Other questions:
  • The relationship between voltage, E, current, I, and resistance, Z, is given by the equation E = IZ. If a circuit has a current
    5·2 answers
  • A 120 g coconut falls 12 m. What is the kinetic energy of the coconut just before it hits the ground?
    13·1 answer
  • 19.A 20 kg sign is pulled by a horizontal force such that the single rope (originally vertical) holding the sign makes an angle
    13·1 answer
  • 10 cm^3 of iron have a smaller
    12·1 answer
  • A 1000-kg car rolling on a smooth horizontal surface ( no friction) has speed of 20 m/s when it strikes a horizontal spring and
    6·1 answer
  • Which is a characteristic of an amorphous solid?
    11·1 answer
  • A 70 kg person walks 200 m in 4 seconds. What is their momentum?
    10·1 answer
  • Suppose a pendulum clock has been calibrated to be accurate in San Francisco, where g = 9.800 m/s2 . In Camrose, g = 9.811 m/s2
    6·1 answer
  • Please help me! As quickly as possible
    9·1 answer
  • A soccer player kicks a ball at rest on the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!