1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
4 years ago
11

The gravitational force of a star on an orbiting planet 1 is f1. planet 2, which is three times as massive as planet 1 and orbit

s at twice the distance from the star, experiences gravitational force f2. part a what is the ratio f2f1? you can ignore the gravitational force between the two planets.

Physics
2 answers:
RideAnS [48]4 years ago
7 0

The ratio F₂ : F₁ = 3 : 4

\texttt{ }

<h3>Further explanation</h3>

Newton's gravitational law states that the force of attraction between two objects can be formulated as follows:

\large {\boxed {F = G \frac{m_1 ~ m_2}{R^2}} }

<em>F = Gravitational Force ( Newton )</em>

<em>G = Gravitational Constant ( 6.67 × 10⁻¹¹ Nm² / kg² )</em>

<em>m = Object's Mass ( kg )</em>

<em>R = Distance Between Objects ( m )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

Gravitational force on planet 1 = F₁

Gravitational force on planet 2 = F₂

mass of planet 1 = m₁

mass of planet 2 = m₂ = 3m₁

distance between planet 1 and star = R₁

distance between planet 2 and star = R₂ = 2R₁

<u>Asked:</u>

ratio of force = F₂ : F₁ = ?

<u>Solution:</u>

F_2 : F_1 = G \frac{ M m_2} { (R_2)^2 } : G \frac{ M m_1} { (R_1)^2 }

F_2 : F_1 = \frac{m_2} { (R_2)^2 } : \frac{ m_1} { (R_1)^2 }

F_2 : F_1 = \frac{3m_1} { (2R_1)^2 } : \frac{ m_1} { (R_1)^2 }

F_2 : F_1 = \frac{3} { 4 } : 1

\boxed{F_2 : F_1 = 3 : 4}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Gravitational Fields

Margaret [11]4 years ago
3 0

Let  us consider two bodies having masses m and m' respectively.

Let they are  separated by a distance of r from each other.

As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -  F = G\frac{mm'}{r^{2} }   where G is the gravitational force constant.

From the above we see that F ∝ mm' and F\alpha \frac{1}{r^{2} }

Let the orbital radius of planet  A is r_{1}  = r and mass of planet is m_{1}.

Let the mass of central star is m .

Hence the gravitational force for planet A  is f_{1} =G \frac{m_{1}*m }{r^{2} }

For planet B the orbital radius  r_{2} =2r_{1} and mass m_{2} = 3 m_{1}

Hence the gravitational force f_{2} =G\frac{m m_{2} }{r^{2} }

                                                 f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }

                                                 = \frac{3}{4} G\frac{mm_{1} }{r_{1} ^{2} }

Hence the ratio is  \frac{f_{2} }{f_{1} } = \frac{\frac{3}{4}G mm_{1/r_{1} ^2}  }{Gmm_{1}/r_{1} ^2 }

                                      =\frac{3}{4}     [ ans]


                                                 

                           

You might be interested in
Help with Order of Magnitude question?
solong [7]
The rotation of Earth is equivalent to one day which is comprised of 24 hours. To determine the number of miles in Earth's circumference, one simply have to multiply the given rate by the appropriate conversion factor and dimensional analysis. This is shown below.
 
                  C = (1038 mi/h)(24 h/1 day)
                   C = 24,912 miles

From the given choices, the nearest value would have to be 20,000 mile. The answer is the second choice. 
7 0
3 years ago
Can someone help me answer this
netineya [11]

Answer: b is sedimentary. c is metamorphic. and a is igneous.

Explanation:

6 0
3 years ago
Read 2 more answers
The bohr shift on the oxygen-hemoglobin dissociation curve is produced by changes in
Alisiya [41]

Answer:

THE BOHR SHIFT ON THE OXYGEN-HEMOGLOBIN DISSOCIATION CURVE IS PRODUCED BY CHANGES IN THE CONCENTRATION OF CARBON IV OXIDE.

Explanation:

The oxygen-hemoglobin dissociation curve shows the relationship between the saturated hemoglobin concentration and oxygen. It shows how the blood hold on to and releases oxygen. The Bohr shift can occur as a result of changes in concentration of carbon iv oxide and other factors such as acidity or pH, 2,3-bisphosphoglycerate, exercise, also temperature of the body. These factors contributes to the right or left shift on the curve. Carbon iv oxide prevents the binding of oxygen to the hemoglobin. The is because hemoglobin has the same binding site for both oxygen and carbon iv oxide. Carbon iv oxide increase also leads to a change in the pH of the blood through the formation of bicarbonate ion. Bicarbonate ion formation causes reduced acidity and therefore lead a shift in the dissociation curve for more of the carbon iv oxide to be excreted as hemoglobin's affinity for oxygen reduces. And when the concentration of carbon iv oxide is low in the plasma, acidity increases and this provides more affinity for oxygen by the hemoglobin.

7 0
3 years ago
If a ball is thrown vertically upward with a velocity of 80 ft/s, then its height after t seconds is s = 80t − 16t 2 . (a) what
MAXImum [283]
Max height occurs when v = 0.
v(t) = ds(t)/dt
v(t) = 80 - 32t
0 = 80 - 32t
t = 5/2

s(5/2) = 80(5/2) - 16(5/2)^2
s(5/2) = 100
Answer: 100 ft

96 = 80t - 16t²
t = 3, 2
(80 ± √256) / 32 using the quadratic equation.

v(2) = 16
v(3) = -16
4 0
3 years ago
5. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass
Vikentia [17]

The options of the question are missing. I have attached it.

Answer:

Satellite in option B will have the greatest speed.

Explanation:

From kepplers third law, we know that

V² = GM/R

Thus, v = √(GM/R)

Where;

v is velocity

G is gravitational constant

M is mass

R is radius

Looking at the options, let's start from the first one;

Option A

Here, mass = (1/2)m and radius = R

So, v = √(GM/R) thus v = √(G(m/2)/R) = √(Gm/2R)

Option B

Here, mass = m and radius = (1/2)R

Thus v = √(Gm/(R/2)) = √(2Gm/R)

Option C

Here, mass = m and radius = R

Thus v = √(Gm/R)

Option D

Here, mass = m and radius = 2R

Thus v = √(Gm/(2R))

Now, inspecting all the options, it's clear that option B will have the greatest velocity because it's numerator is the biggest and will in turn lead to higher velocity.

4 0
4 years ago
Other questions:
  • A 2.4 kg box has an initial velocity of 3.6 m/s upward along a plane inclined at 27◦ to the horizontal. The coefficient of kinet
    5·1 answer
  • Margaret swam 100 meters in 5 minutes. What was her swimming speed?
    6·1 answer
  • Two point charges, A and B, are separated by a distance of 16.0cm. The magnitude of the charge on A is twice that of the charge
    13·1 answer
  • A conditioning program should begin at a low to moderate level. True or False
    13·1 answer
  • If a subway train is moving to the left (has a negative velocity) and then comes to a stop, what is the direction of its acceler
    14·1 answer
  • Which do you think the correct answer was wrong<br> Help plis:(
    11·1 answer
  • Can anyone help me to explain theory of relativity??? ​
    13·1 answer
  • Guys help me with this question.​
    14·1 answer
  • A hockey player uses a 400- gram stick to apply 50 newtons of force to a 170-gram puck, causing a momentum of change 5kg x m/s.
    14·1 answer
  • a crude approximation of voice production is to consider the breathing passages and mouth to be a resonating tube closed at one
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!