Answer:

Explanation:
Hello!
In this case, for this melting process, we can identify two sub-processes in order to take the stainless steel from solid to liquid:
1. Heat up from 298.15 K to 1673 K.
2. Undergo the phase transition.
Both process have an associated enthalpy as shown below:


Therefore, the required heat is:

Notice the problem is not providing neither the mass or volume, that is why we assumed the mass is 1 g; however, it can be changed to the mass you are given.
Best regards!
To solve this problem we will apply the concepts related to the thermal efficiency given in an engine of the Carnot cycle. Here we know that efficiency is given under the equation

Where,
Temperature of Cold Body
Temperature of Hot Body
= Efficiency
According to the statement our values are:


Replacing we have that




Therefore the temperature of the heat source is 300K
Answer:
d = 10.2 m
Explanation:
When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

where,
m = mass of car
v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)
v = 10 m/s
F = force on the car in direction of inclination = W Sin θ
W = weight of car = mg
θ = Angle of inclinition = 30°
d = distance covered up the ramp = ?
Therefore,

<u>d = 10.2 m</u>