Answer:
175 N/m
Explanation:
Given:
Force = F= 14.0 N
Distance = x = 8.00 cm = 0.08 m
To find:
spring constant
Solution:
spring constant is calculated by using Hooke's law:
k = F/x
Putting the values in above formula:
k = 14.0 / 0.08
k = 175 N/m
Answer:
a. 475.14 Hz
b. 1959 Hz
c. 2341.53 Hz , 3053.34 Hz
Explanation:

a. smallest use the capacitive 4.2 uF + 6.0 uF = 10.2uF replacing:


b. second smallest use the capacitive 6 uF so:


c. second largest and largest oscillation first combination so:
Use 4.2 uF


And finally largest oscillation cap in serie so:




Answer:
31.8 × 10⁻⁴ J = 3.18 mJ
Explanation:
We know the intensity I of a wave is I = P/A where P = power and A = area = 0.500 m²
The intensity of an electromagnetic wave is also equal to I = E₀²/μ₀c
where E₀ = maximum electric field strength = √2E where E = rms value of electric field = 0.0200 N/C, μ₀ = 4π × 10⁻⁷ H/m ,c = 3 × 10⁸ m/s
P/A = E₀²/μ₀c = 2E²/μ₀c
P = 2E²A/μ₀c = 2 × (0.02 N/C)² × 0.5 m²/(4π × 10⁻⁷ H/m × 3 × 10⁸ m/s)
= 1.06 × 10⁻⁴ W = 0.106 mW
Since P = E/t where E = Energy and t = time
E = Pt with t = 30 s
E = 1.06 × 10⁻⁴ W × 30 s = 31.8 × 10⁻⁴ J = 3.18 mJ
So the wave carries 3.18 mJ of energy through the window in 30 s
Answer:
218m
Explanation:
Given parameters:
Initial velocity = 3.3m/s
acceleration = 3.7m/s²
time = 10s
Unknown:
How far will it travel during the time of acceleration = ?
Solution:
We use of the kinematics equations to solve this problem;
S = ut +
at²
S is the distance
u is the initial velocity
t is the time
a is the acceleration
So;
S = (3.3x10) + (
x 3.7 x 10²) = 218m