Answer:
how large a magnetic field would you experience = 8.16 x 10∧-4T
Explanation:
I = 20KA = 20,000A
r = 4.9 m
how large a magnetic field would you experience = u.I/2πr
how large a magnetic field would you experience = (4π x10∧-7) × 20000/2π × 4.9
how large a magnetic field would you experience = 8.16 x 10∧-4T
Answer:
U = -3978.8 J
Explanation:
The work of the gravitational force U just depends of the heigth and is calculated as:
U = -mgh
Where m is the mass, g is the gravitational acceleration and h the alture.
for calculate the alture we will use the following equation:
h = L-Lcos(θ)
Where L is the large of the rope and θ is the angle.
Replacing data:
h = 12.2-12.2cos(58.4)
h = 5.8 m
Finally U is equal to:
U = -70(9.8)(5.8)
U = -3,978.8 J
Answer:
True The grid with more slits gives more angle separation increases
True. The grating with 10 slits produces better-defined (narrower) peaks
Explanation:
Such a system can be seen as a diffraction network in this case with different number of lines per unit length, the expression for the constructive interference of a diffraction network is
d sin θ = m λ
where d is the distance between slits or lines, m the order of diffraction and λ the wavelength.
For network with 5 slits
d = 1/5 = 0.2
For the network with 10 slits
d = 1/10 = 0.1
let's calculate the separation (teat) for each one
θ = sin⁻¹ (m λ / d)
for 5 slits
θ₅ = sin⁻¹ (m λ 5)
for 10 slits
θ₁₀ = sin⁻¹ (m λ 10)
we can appreciate that for more slits the angle increases
the intensity of a series of slits is
I = I₀ sin²2 (N d/2) / sin² d/2)
when there are more slits (N) the peaks have greater intensity and are more acute (half width decreases)
let's analyze the claims
False
True The grid with more slits gives more angle separation increases
False
True The expression for the intensity of the diffraction peaks the intensity of the peaks increases with the number of slits as well as their spectral width decreases
False
Answer:
The electron's speed is 34007.35 m/s
Explanation:
It is given that,
Magnetic field, B = 0.34 T
Magnetic force on the electron, 
The electron follows a helical path. We have to find the speed of an electron. The formula for magnetic force is given by :

q = charge on an electron, 
v = velocity of an electron


v = 34007.35 m/s
Hence, this is the required solution.
Answer:
The first part can be solved via conservation of energy.

For the second part,
the free body diagram of the car should be as follows:
- weight in the downwards direction
- normal force of the track to the car in the downwards direction
The total force should be equal to the centripetal force by Newton's Second Law.

where
because we are looking for the case where the car loses contact.

Now we know the minimum velocity that the car should have. Using the energy conservation found in the first part, we can calculate the minimum height.

Explanation:
The point that might confuse you in this question is the direction of the normal force at the top of the loop.
We usually use the normal force opposite to the weight. However, normal force is the force that the road exerts on us. Imagine that the car goes through the loop very very fast. Its tires will feel a great amount of normal force, if its velocity is quite high. By the same logic, if its velocity is too low, it might not feel a normal force at all, which means losing contact with the track.