Answer:
Heat required to melt 1 lb of ice is 151.469 KJ
Explanation:
We have given mass of ice = 1 lb
We know that 1 lb = 0.4535 kg
Latent heat of fusion for ice =334 KJ/kg
Amount if heat for fusion of ice is given by
, here m is mass of ice and L is latent heat of fusion
So heat 
So heat required to melt 1 lb of ice is equal to 151.469 KJ
For this case, in the next item we have gravitational potential energy:
An apple in a tree.
Suppose we define our reference system at the floor level.
Suppose the apple is at a height h from the floor and has mass m.
The gravitational potential energy of the apple is given by:
U = mgh
Where,
m: apple mass
h: height of the apple with respect to the floor
g: acceleration due to gravity
Answer:
C) an apple on a tree
Answer:
1 N
Explanation:
From coulomb's law,
The force of attraction between two charges is inversely proportional to the square of the distance between the charges.
From the question,
Assuming the charges are the same in both case,
F ∝ /r²....................... Equation 1
Fr² = k
F'r'² = Fr²........................... Equation 2
Where F' = First Force, r'² = First distance, F = second force, r² = second distance.
make F the subject of the equation,
F = F'r'²/r².................... Equation 3
Given: F' = 4 N, r' = 3 m, r = 6 m
Substitute into equation 3
F = 4(3²)/6²
F = 36/36
F = 1 N
Answer:
A. continental-oceanic convergent
Explanation:
I knew it couldn't be B because it's oceanic and <em>continental</em>, not oceanic and <em>oceanic</em>.
Next, I noticed the word <em>convergent</em>, which implies "coming together" to me.
I looked it up and noticed the term <em>convergent</em> referred to a plate boundary where a plate slips under (<em>subducted</em>) another, so I knew it was A.
Hopefully, this helps you understand the question better. Have a great day!
Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s