1. <em>Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period. </em>
<em>2. Physical state of the reactants and surface area.</em>
Answer:
a. Gly-Lys + Leu-Ala-Cys-Arg + Ala-Phe
b. Glu-Ala-Phe + Gly-Ala-Tyr
Explanation:
In this case, we have to remember which peptidic bonds can break each protease:
-) <u>Trypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of lysine or arginine.
-) <u>Chymotrypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of phenylalanine, tryptophan, or tyrosine.
With this in mind in "peptide a", the peptidic bonds that would be broken are the ones in the <u>"Lis"</u> and <u>"Arg"</u> (See figure 1).
In "peptide b", the peptidic bond that would be broken is the one in the <u>"Phe"</u> (See figure 2). The second amino acid that can be broken is <u>tyrosine</u>, but this amino acid is placed in the <u>C terminal spot</u>, therefore will not be involved in the <u>hydrolysis</u>.
Answer:
Yes sirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
Answer:
94.8454
Explanation:
Let volume be V
Let Temperature be T
V1= 92
T1= 3C but to kelvin 273+3= 300K
V2= ?
T2= 18 C but to kelvin 18+273= 291




