Answer:
a) C = 4,012 10⁻¹⁴ F, b) Q = 1.6 10⁻¹¹ C
, c) U = 3.21 10⁻¹¹ J
Explanation:
a) The capacitance of a capacitor is
C = k e₀ A / d
Let's calculate
C = 4 8.85 10⁻¹² 17 10⁻⁴ / 0.150 10⁻²
C = 4,012 10⁻¹⁴ F
b) let's look the charge
C = Q / ΔV
Q = C ΔV
Q = 4,012 10⁻¹⁴ 400
Q = 1.6 10⁻¹¹ C
c) The stored energy
U = ½ C ΔV²
U = ½ 4,012 10⁻¹⁴ 400²
U = 3.21 10⁻¹¹ J
The zone that gases always accelerate upward is the Luminous flame zone. The fire plume is the column of hot gases, flames and smoke rising above a fire. Gases accelerate upward toward the always luminous flame zone. The luminous flame height is the distance between the base of a flame and the point at which the plume is luminous half the time and transparent half the time.
Answer:
B) 0.3Hz
Explanation:
I just took the test i hope i helped and i hope you pass the test
The correct answer is option C. <span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
</span><span>
Keisha follows the instructions for a demonstration on gas laws.
1. Place a small marshmallow in a large plastic syringe.
2. Cap the syringe tightly.
3. Pull the plunger back to double the volume of gas in the syringe.
Now, this activity is being done at the same temperature, because there is no mention of the temperature change. Thus, when the plunger is pulled back, the volume doubles, so pressure will decrease. Therefore, </span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
Answer:
The number density of the gas in container A is twice the number density of the gas in container B.
Explanation:
Here we have
P·V =n·R·T
n = P·V/(RT)
Therefore since V₁ = V₂ and T₁ = T₂
n₁ = P₁V₁/(RT₁)
n₂ = P₂V₂/(RT₂)
P₁ = 4 atm
P₂ = 2 atm
n₁ = 4V₁/(RT₁)
n₂ =2·V₁/(RT₁)
∴ n₁ = 2 × n₂
Therefore, the number of moles in container A is two times that in container B and the number density of the gas in container A is two times the number density in container B.
This can be shown based on the fact that the pressure of the container is due to the collision of the gas molecules on the walls of the container, with a kinetic energy that is dependent on temperature and mass, and since the temperature is constant, then the mass of container B is twice that of A and therefore, the number density of container A is twice that of B.