Nearly equal the output work is greater than the input work because of friction.All machines use some amount of input work to overcome friction.The only way to increase the work output is to increase the work you put into the machine.You cannot get more work out of a machine than you put into it.
One form of Ohm's Law says . . . . . Resistance = Voltage / Current .
R = V / I
R = (12 v) / (0.025 A)
R = (12 / 0.025) (V/I)
<em>R = 480 Ohms</em>
I don't know if the current in the bulb is steady, because I don't know what a car's "accumulator" is. (Floogle isn't sure either.)
If you're referring to the car's battery, then the current is quite steady, because the battery is a purely DC storage container.
If you're referring to the car's "alternator" ... the thing that generates electrical energy in a car to keep the battery charged ... then the current is pulsating DC, because that's the form of the alternator's output.
Option number three is correct energy can be transformed and moved and released but it can't be destroyed and doesn't disappear.
If the applied force is in the same direction as the object's displacement, the work done on the object is:
W = Fd
W = work, F = force, d = displacement
Given values:
F = 45N
d = 12m
Plug in and solve for W:
W = 45(12)
W = 540J
So, If the silica cyliner of the radiant wall heater is rated at 1.5 kw its temperature when operating is 1025.3 K
To estimate the operating temperature of the radiant wall heater, we need to use the equation for power radiated by the radiant wall heater.
<h3>Power radiated by the radiant wall heater</h3>
The power radiated by the radiant wall heater is given by P = εσAT⁴ where
- ε = emissivity = 1 (since we are not given),
- σ = Stefan-Boltzmann constant = 6 × 10⁻⁸ W/m²-K⁴,
- A = surface area of cylindrical wall heater = 2πrh where
- r = radius of wall heater = 6 mm = 6 × 10⁻³ m and
- h = length of heater = 0.6 m, and
- T = temperature of heater
Since P = εσAT⁴
P = εσ(2πrh)T⁴
Making T subject of the formula, we have
<h3>Temperature of heater</h3>
T = ⁴√[P/εσ(2πrh)]
Since P = 1.5 kW = 1.5 × 10³ W
Substituting the values of the variables into the equation, we have
T = ⁴√[P/εσ(2πrh)]
T = ⁴√[1.5 × 10³ W/(1 × 6 × 10⁻⁸ W/m²-K⁴ × 2π × 6 × 10⁻³ m × 0.6 m)]
T = ⁴√[1.5 × 10³ W/(43.2π × 10⁻¹¹ W/K⁴)]
T = ⁴√[1.5 × 10³ W/135.72 × 10⁻¹¹ W/K⁴)]
T = ⁴√[0.01105 × 10¹⁴ K⁴)]
T = ⁴√[1.105 × 10¹² K⁴)]
T = 1.0253 × 10³ K
T = 1025.3 K
So, If the silica cylinder of the radiant wall heater is rated at 1.5 kw its temperature when operating is 1025.3 K
Learn more about temperature of radiant wall heater here:
brainly.com/question/14548124