Answer:
You drop a rock from rest out of a window on the top floor of a building, 30.0 m above the ground. When the rock has fallen 3.00 m, your friend throws a second rock straight down from the same window. You notice that both rocks reach the ground at the exact same time. What was the initial velocity of the ...... rest out of a window on the top floor of a building, 30.0m above the ground. ... You Notice That Both Rocks Reach The Ground At The Exact Same Time. ... You drop a rock from rest out of a window on the top floor of a building, 30.0m ... When the rock has fallen 3.20 m, your friend throws a second rock straight down from ...
If the object is moving in a straight line at a constant speed, then that's
the definition of zero acceleration. It can only happen when the sum of
all forces (the 'net' force) on the object is zero.
And it doesn't matter what the object's mass is. That argument is true
for specks of dust, battleships, rocks, stars, rock-stars, planets, and
everything in between.
The plant will not grow. In fact it could have all the nutrients and all the water it needs, but without a sufficient amount of light, it could die because its leaves are meant for a certain minimum amount of light.
I'll come back and see if you have posted the question you wanted and edit my answer.
Answer:
(a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
Explanation:
Given that,
Angular velocity = 110 rev/m
Radius = 4.50 m
(a). We need to calculate the average speed
Using formula of average speed



(b). The average velocity over one revolution is zero because the net displacement is zero in one revolution.
Hence, (a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.