1.199 M is the concentration of KCI in the resulting solution.
<h3 /><h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
No.of moles of KCI


= 0.599 moles
Vol.of the solution,V= 500 ml
= 0.5 liter
Molarity


= 1.199 M
Hence, 1.199 M is the concentration of KCI in the resulting solution.
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
<span>cu=1*63g=63g
n=2*14g=28g
o=6*16g=96g
total=187g/mol
122(1 mol/187)(6.02*10^23)= 3.92*10^23 </span><span>
</span>
Answer : The balanced reduction half-reaction is:

Explanation :
Redox reaction or Oxidation-reduction reaction : It is defined as the reaction in which the oxidation and reduction reaction takes place simultaneously.
Oxidation reaction : It is defined as the reaction in which a substance looses its electrons. In this, oxidation state of an element increases. Or we can say that in oxidation, the loss of electrons takes place.
Reduction reaction : It is defined as the reaction in which a substance gains electrons. In this, oxidation state of an element decreases. Or we can say that in reduction, the gain of electrons takes place.
The given balanced redox reaction is :

The half oxidation-reduction reactions are:
Oxidation reaction : 
Reduction reaction : 
In order to balance the electrons, we multiply the oxidation reaction by 2 and reduction reaction by 3 and then added both equation, we get the balanced redox reaction.
Oxidation reaction : 
Reduction reaction : 
The balanced redox reaction will be:

Thus, the balanced reduction half-reaction is:

A gas with a vapor density greater than that of air, would be most effectively displaced out off a vessel by ventilation.
The two following principles determine the type of ventilation: Considering the impact of the contaminant's vapour density and either positive or negative pressure is applied.
Consider a vertical tank that is filled with methane gas. Methane would leak out if we opened the top hatch since its vapour density is far lower than that of air. A second opening could be built at the bottom to greatly increase the process' efficiency.
A faster atmospheric turnover would follow from air being pulled in via the bottom while the methane was vented out the top. The rate of natural ventilation will increase with the difference in vapour density. Numerous gases that require ventilation are either present in fairly low concentrations or have vapor densities close to one.
The answer to your question is,
D. Fluctuates
-Mabel <3