Answer:
posotive
Explanation:
electrons give off negative pulse so take one away
Answer:
T₂ = 51826.1 K
Explanation:
Given data:
Initial Volume = 2.3 L
Final volume = 400 L
Initial temperature = 25 °C (25+ 273 = 298 K)
Final temperature = ?
Solution:
V₁/T₁ = V₂/T₂
T₂ = V₂ T₁/V₁
T₂ = 400 L . 298 K / 2.3 L
T₂ = 119200 K. L / 2.3 L
T₂ = 51826.1 K
Complete question is;
When the concentrations of reactant molecules are increased, the rate of reaction increases. The best explanation for this phenomenon is that as the reactant concentration increases,
A)the average kinetic energy of molecules increases.
B)the frequency of molecular collisions increases.
C)the rate constant increases.
D)the activation energy increases.
E)the order of reaction increases.
Answer:
B) The frequency of molecular collisions increases.
Explanation:
When we increase number of reactant molecules, the effective collision between the reactant molecules will form a product which also increases. As a result, the overall rate of the reaction will also increase which means the frequency of the molecular collision will also increase as well.
Thus, the correct answer is Option B
Answer:
0.928 M
Explanation:
The concentration of acid can be determined by using the volume used and the concentration and volume used of base.
We will use the law of equivalence of moles.
M₁V₁=M₂V₂
M₁ = concentration of base used
V₁ = volume of base used
M₂ = concentration of acid used =? (to be determined)
V₂ = volume of acid used
The initial concentration of KOH used is diluted so let us find the final concentration of KOH after dilution
initial moles = final moles
initial concentration X initial volume = final concentration X final volume
6.2 X 2.1 = 250 X final concentration
final concentration = 0.052 M = M₁
V₁ = 36.9 mL
V₂ = 6.2 mL
Here with each mole of phosphoric acid three moles of KOH are used.
Therefore
3 M₁V₁ = M₂V₂
M₂ = 