The volume of H₂O = 5 L
<h3>Further explanation</h3>
Given
5L of H₂ and 3L O₂
Reaction
2H₂ (g) + O₂(g) ⇒2H₂O(g)
Required
The volume of H₂O
Solution
Avogadro's hypothesis:
<em>In the same T,P and V, the gas contains the same number of molecules </em>
So the ratio of gas volume will be equal to the ratio of gas moles
mol H₂ = 5, mol O₂ = 3
From equation, mol ratio H₂ : O₂ = 2 : 1, so :

mol H₂O based on mol H₂, and from equation mol ratio H₂ : H₂O=2 : 2, so mol H₂O = 5 mol and the volume also 5 L
Most metamorphic processes take place a few kilometers below Earth's surface. Metamorphic processes result due to intense heat and high pressure below the Earth's surface. Also, metamorphism can occur on two scales, contact and regional.
Answer:
See attached figure.
Explanation:
Hello there!
In this case, according to the given substances, we recall the concept of Lewis structure as such showing the bonds and valence electrons each atom has in the molecule. Thus, since chlorine atoms have seven valence electrons, carbon atoms four of them, hydrogen atoms have 1 and oxygen atoms 6, we are able to draw such Lewis dot structures, by obeying the octet as shown on the attached figure.
Best regards!
Options are as follow,
A) <span>Constant volume, no intermolecular forces of attraction,energy loss in collisions
B) </span><span>No volume, strong intermolecular forces of attraction, perfectly elastic collisions
C) </span><span>Constant volume, no intermolecular forces of attraction, energy gain during collisions
D) </span><span>No volume, no intermolecular forces of attraction, perfectly elastic collisions
Answer:
Option-D (</span>No volume, no intermolecular forces of attraction, perfectly elastic collisions) is the correct answer.
Explanation:
As we know there are no interactions between gas molecules due to which they lack shape and volume and occupies the shape and volume of container in which they are kept. So, we can skip Option-B.
Secondly we also know that the gas molecules move randomly. They collide with the walls of container causing pressure and collide with each other. And these collisions are perfectly elastic and no energy is lost or gained during collisions. Therefore Option-A and C are skipped.
Now we are left with only Option-D, In option D it is given that ideal gas has no volume. This is true related to Ideal gas as it is stated in ideal gas theories that molecules are far apart from each other and the actual volume of gas molecules compared to volume of container is negligible. Hence, for ideal gas Option-D is a correct answer.