Answer:
a
No
b
100 mm Hg
Explanation:
From the question we are told that
The vapor pressure of CHCl3, is 
The temperature of CHCl3 is 
The volume of the container is 
The temperature of the container is 
The mass of CHCl3 is m = 0.380 g
Generally the number of moles of CHCl3 present before evaporation started is mathematically represented as

Here M is the molar mass of CHCl3 with the value 
=> 
=>
Generally the number of moles of CHCl3 gas that evaporated is mathematically represented as

Here R is the gas constant with value 
So
Given that the number of moles of CHCl3 evaporated is less than the number of moles of CHCl3 initially present , then it mean s that not all the liquid evaporated
At equilibrium the temperature of CHCl3 will be equal to the pressure of air so the pressure at equilibrium is 100 mmHg
Diagram of the nuclear composition, electron configuration, chemical data, and valence orbitals of an atom of neodymium-144 (atomic number: 60), an isotope of this element. The nucleus consists of 60 protons (red) and 84 neutrons (orange). 60 electrons (white) successively occupy available electron shells (rings).
C=0.10 mol/l
pH=-lg[H⁺]
HCl = H⁺ + Cl⁻
pH=-lgc
pH=-lg0.10=1.0
pH=1.0
The high surface tension helps the paper clip - with much higher density - float on the water. The property of the surface of a liquid that allows it to resist an external force, due to the cohesive nature of its molecules.
Basically it means that there is a sort of skin on the surface of water where the water molecules hold on tight together. If the conditions are right, they can hold tight enough to support your paper clip. The paperclip is not truly floating, it is being held up by the surface tension.