<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
Answer:
below :)
Explanation:
Bones, droppings, and other dead matter
Energy storage molecules, cellular respiration
Process, energy
Oxygen, energy storage molecules, energy, carbon dioxide
Cellular respiration, carbon
Carbon, nitrogen
Nitrogen
Decomposers, ecosystem
The answer is (3) methods to achieve racial equality.
Both Du Bois and Washington had different views on how to promote equality, Du Bois emphasized education and immediate political equality while Washington was more concerned with economic equality in industrial and agriculture
A valid lewis structure of SO2 cannot be drawn without violating the octet rule.
correct me if i’m wrong.