Answer:
C. A rubber rod and a glass rod charged this way have opposite charges on them.
Explanation:
When a rubber rod is rubbed against cat fur, it acquires a negative charge, it becomes negatively charged.
When you then try to bring two rubber rod's together, they repel because like charges repel.
Meanwhile, when you rub a glass rod against silk, it loses electrons to the silk material and becomes positively charged.
When you bring two positively charged glass rod's together, they repel, because like charges repel.
However, when you bring the rubber rod and a glass rod together, the attract each other because unlike/opposite charges attract.
If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.
Answer:

Explanation:
Since,
<h3><u>1 kWh = 1 unit</u></h3>
So,
1.6 kWh = 1.6 units
If,
<h3>1 unit = 9p</h3>
1.6 units = 9p × 1.6
1.6 units = 14.4p
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
You can test if it’s true by holding a pencil in mid air over a table and the table is supposed to be the unbalanced forced that stopped the pencil from moving at the constant velocity it was going by.
We'll look at two properties:
1. The variation in temperature
2. The material's heat transfer coefficient
By taking an example;
Use a circular rod made of a certain material (for example, steel) that is insulated all the way around.
One end of the rod is immersed in a huge reservoir of 100°C water, while the other is immersed in water at 40°C. The cold water is kept in an insulated cylinder on both sides. The temp of the chilly water is measured using a meter as a time - dependent.
Conclusion of experiment;
- Heat is transferred from a hot location to a cooler region.
- Whenever heat is applied to a body, its thermal power rises, and its temperature rises.
Learn more:
brainly.com/question/21532922?referrer=searchResults