Answer:
Distance is directly proportional to the velocity
Explanation:
In 1929, Edwin Hubble's wrote an article that talked about relationship between the distance and recession speed/velocity of galaxies which led to what is known as the Hubble Law. This law states that galaxies are moving away from the earth at velocities proportional to their distances.
Thus is written as;
v = H_o•d
Where;
v is velocity
d is distance
H_o is Hubble's constant rate of cosmic expansion.
He came to this conclusion by generating a graph known as Hubble's classic graph which was a graph of observed velocity vs distance for nearby galaxies.
Answer:
C. 28.09 amu
Explanation:
The natural occurring element exist in 3 isotopic forms: namely X-28 (27.977 amu, 92.23% abundance), X-29 (28.976 amu, 4.67% abundance) and X-30 (29.974 amu, 3.10% abundance).
The atomic weight of elements depends on the isotopic abundance. If you know the fractional abundance and the mass of the isotopes the atomic weight can be computed.
The atomic weight is computed as follows:
atomic weight = mass of X-28 × fractional abundance + mass of X-29 × fractional abundance + mass of X-30 × fractional abundance
atomic weight = 27.977 × 0.9223 + 28.976 × 0.0467 + 29.974 × 0.0310
atomic weight = 25.8031871 + 1.3531792 + 0.929194
atomic weight = 28.0855603 amu
To 2 decimal place atomic weight = 28.09 amu
Answer:
The time is 133.5 sec.
Explanation:
Given that,
One side of cube = 10 cm
Intensity of electric field = 11 kV/m
Suppose How long will it take to raise the water temperature by 41°C Assume that the water has no heat loss during this time.
We need to calculate the rate of energy transfer from the beam to the cube
Using formula of rate of energy


Put the value into the formula


We need to calculate the amount of heat
Using formula of heat


Put the value into the formula


We need to calculate the time
Using formula of time

Put the value into the formula


Hence, The time is 133.5 sec.
Answer:
λ = 3 10⁻⁷ m, UV laser
Explanation:
The diffraction phenomenon is described by the expression
a sin θ = m λ
let's use trigonometry
tan θ = y / L
as in this phenomenon the angles are small
tan θ =
= sin θ
sin θ = y / L
we substitute
a y / L = m λ
let's apply this equation to the initial data
a 0.04 / L = 1 600 10⁻⁹
a / L = 1.5 10⁻⁵
now they tell us that we change the laser and we have y = 0.04 m for m = 2
a 0.04 / L = 2 λ
a / L = 50 λ
we solve the two expression is
1.5 10⁻⁵ = 50 λ
λ = 1.5 10⁻⁵ / 50
λ = 3 10⁻⁷ m
UV laser