Answer:
I think it's Experimental
Explanation:
it has atoms on it.
Answer:
See explanation below
Explanation:
If we are talking about the kinetic energy of the cylinder of oxygen:
The kinetic energy possessed by any object is given by

where
m is the mass of the object
v is its speed
In this case, we have one cylinder carried by a car and one standing on a platform: this means that the speed of the cylinder carried by the car will be different from zero (and so also its kinetic energy will be different from zer), while the speed of the cylinder standing on the platform will be zero (and so its kinetic energy also zero). Therefore, the kinetic energy of the cylinder carried by the car will be larger than that standing on a platform.
Instead, if we are talking about the kinetic energy due to the random motion of the molecules of oxygen inside the cylinder:
The kinetic energy of the molecules in a gas is directly proportional to the absolute temperature of the gas:

where k is called Boltzmann constant and T is the absolute temperature of the gas. Therefore, we see that K does not depend on whether the gas is in motion or not, but only on its temperature - therefore, in this case there is no difference between the kinetic energy of the cylinder carried by the car and that standing on the platform (assuming they are at the same temperature)
Answer:
Technician A and Technician B are correct.
Explanation:
Given:
Water 4 m deep
Required:
Pressure at the bottom of the
tank
Solution:
p2 – p1 = gh
p2 – p1 = p = gh
p
= gh =
1000kg/m3 (9.8m/s2)(4m)
<span>p =
39200 Pa</span>
Answer:
1) The medium b has higher optical density.
2) If the optical densities of both A and B are same.
Explanation:
- The refractive index of a material determines the number of times the velocity of light in that material is slower than the velocity of light in a vacuum.
- The higher refractive index means slower propagation of the light in that medium.
- The refractive index of the medium determines the optical density of the medium.
- If the material has a higher refractive index, then its optical density is high.
- If the material has a low refractive index, then its optical density is low.
- The light bends towards the normal while refracting through the medium from a lower optical density medium to the higher optical density medium.
- If both the mediums has the same optical density, the direction of propagation doesn't change.