I think it's C, longer wave length.
The graph between the strength of the magnet(number of paper clips picked) and battery is approximately a straight line.
For 25 coil, with increase of 1.5 V battery voltage, the electromagnet picks about 5 more clips. So, for a 7.5 V battery, it would pick about 30 paper clips.
For 50 coil, with increase of 1.5 V battery voltage, the electromagnet picks about 15 more clips. So, for a 7.5 V battery, it would pick about 30 paper clips.
True.
Density = mass / volume, Unit = g / cm³.
This is a common unit because of its affiliation with the SI unit and because that also our popular liquid which is water = 1 g/cm³
m = mass = 5 kg
= initial velocity = 100 m/s
= final velocity = ?
I = impulse = 30 Ns
Using the impulse-change in momentum equation
I = m(
-
)
30 = 5 (
- 100)
= 106 m/s
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is