Answer:
619.8 N
Explanation:
The tension in the string provides the centripetal force that keeps the rock in circular motion, so we can write:

where
T is the tension
m is the mass of the rock
v is the speed
r is the radius of the circular path
At the beginning,
T = 50.4 N
v = 21.1 m/s
r = 2.51 m
So we can use the equation to find the mass of the rock:

Later, the radius of the string is decreased to
r' = 1.22 m
While the speed is increased to
v' = 51.6 m/s
Substituting these new data into the equation, we find the tension at which the string breaks:

<h2> The potential and kinetic energy of airplane are affected by these factors </h2>
Explanation:
When airplane rises up , it requires potential energy . This potential energy can be taken from the kinetic energy of airplane .
Thus if the speed of wind is larger , it can either oppose the motion of velocity or can favour the velocity of airplane . By which its kinetic energy is effected .
If the weight of airplane is changed , it will effect the potential energy required . Thus heavier plane requires higher potential energy for attaining the same height .
Thus these two factor has important role in the flight of airplane .
The answer is c 1386j
This calculator is very helpful I use it on my homework
https://www.omnicalculator.com/physics/specific-heat
Answer:
Decreased by a factor of 4.5
Explanation:
"We have Newton formula for attraction force between 2 objects with mass and a distance between them:

where
is the gravitational constant on Earth.
are the masses of the object and Earth itself. and R distance between, or the Earth radius.
So when R is tripled and mass is doubled, we have the following ratio of the new gravity over the old ones:




Since
and 

So gravity would have been decreased by a factor of 4.5
Hello!
Recall the equation for gravitational force:

Fg = Force of gravity (N)
G = Gravitational constant
m1, m2 = masses of objects (kg)
r = distance between the objects' center of masses (m)
There is a DIRECT relationship between mass and gravitational force.
We are given:

If we were to double one mass and triple another, according to the equation:

Thus:
