Answer:
acceleration a = 1.04 m/s2
Explanation:
Assume the train has a speed of 23m/s when the last car passes the railway workers. Once this happens the last car would have traveled a total distance of the 180m distance between the railway worker standing 180 m from where the front of the train started plus the 75m distance from the first car to the last car:
s = 75 + 180 = 255 m
We can use the following equation of motion to find out the distance traveled by the car:
where v = 23 m/s is the velocity of the car when it passes the worker, = 0m/s is the initial velocity of the car when it starts, a m/s2 is the acceleration, which we are looking for.
Internal energy of the system changes by ΔE = 178 J.
Heat given to the system = Q = +658 J.
According to the first law of thermodynamics,
ΔE = Q + W
178 = 658 + W
∴ W = 178-658 = -480 J
Minus sign indicates that work is done by the system.
Answer:
The magnitude of the electric force on a protein with this charge is
Explanation:
Given that,
Electric field = 1500 N/C
Charge = 30 e
We need to calculate the magnitude of the electric force on a protein with this charge
Using formula of electrostatic force
Where, F = force
E = electric field
q = charge
Put the value into the formula
Hence, The magnitude of the electric force on a protein with this charge is
Answer:
It comes out the positive side of the battery and goes in to the negative side of the battery
Explanation:
There are already electrons in wires in a circuit before you add the battery. By adding the battery, you're giving the electrons the energy it needs to move along the circuit.
In a series circuit, the circuit is one continuous loop so there is only one path for the electrons to go - out of the positive side of the battery and around the circuit then goes back into the negative side of the battery.
However, with a parallel circuit, there are two or more ways the electrons can go so they take the path of least resistance. The electrons still go out the positive side of a battery but along the circuit, the electrons will go through the path of least resistance ( I tend to think of it like a net with holes in it - the lower the resistance the bigger the holes for the electrons to go through so more can fit in a set amount of time ) but the electrons still go out of the positive side and in through the negative
Answer: This is what I found hope it helps
Explanation: