Answer:
13.51 nm
Explanation:
To solve this problem, we are going to use angle approximation that sin θ ≈ tan θ ≈ θ where our θ is in radians
y/L=tan θ ≈ θ
and ∆θ ≈∆y/L
Where ∆y= wavelength distance= 2.92 mm =0.00292m
L=screen distance= 2.40 m
=0.00292m/2.40m
=0.001217 rad
The grating spacing is d = (90000 lines/m)^−1
=1.11 × 10−5 m.
the small-angle
approx. Using difraction formula with m = 1 gives:
mλ = d sin θ ≈ dθ →
∆λ ≈ d∆θ = =1.11 × 10^-5 m×0.001217 rad
=0.000000001351m
= 13.51 nm
Answer:
Hey there!
Stopwatch X recorded 40 seconds, and stopwatch Y recorded 50 seconds.
Stopwatch Y recorded 10 seconds longer than stopwatch X.
Hope this helps :)
Answer:
The Gravitational Force is reduced 4 times
Explanation:
The equation of Gravitational force follows:
F = (G*m1*m2)/r^2
Assume that G*m1*m2 = 1 and r = 1:
F = 1/1^2 = 1 N
Multiply the radius by 2
F = 1/2^2 = 1/4 N
So doubling the distance reduces the force 4 times.
Answer:3,600 Newtons
Explanation:
The net force acting on the car is
3×10^3squared
Newtons.
Force is defined as the product of the mass of the body and its aaceleration,⇒F=ma
Substituting the above given values we get,F=(1500kg) (2.0m /s^2 squared)=3000 N=3×10^3 squared N.
N=newtons