Yes, his velocity will decrease the further he slides.
Answer:
the answer is C
Explanation:
we know this because if you compare the graphs and look at the direction. it isn't always in the explanation or the few sentences they gave you at the top. also, look at the waves, you can see in Davids drawing that it is directly straight up, A and B do not represent that. A isn't even a valid answer. Notice also in A that the arrow is going in the completely different direction than in Davids drawing. B is also going a different direction even though it is only turned a little bit although if it was straight up like Davids drawing then it would most likely be a correct answer. C does have one arrow going a different direction but look at how it has two, showing in which if the waves were to turn then the arrow is still valid
Explanation:
V=u+at
where,
v=final speed
u=initial speed,(starting speed)
a=acceleration
t=time
- v=u+at = 6=2+a*2
6=2+2a
2a=6-2
2a=4
a=4/2 = 2
a =2
2. to find time taken
v=u+at
25=5*2t
2t=25-5
2t=20
t=20/2
t=10sec
3. finding final speed
v=u+at
v=4+10*2
=4+20
v=24m/sec
5.v=u+at
=5+8*10
=5+80
V=85m/sev
6. v=u+at
8=u+4*2
8=u+8
U=8/8
u=1
these are your missing values
If they have self motivation or others motivation, they will show their full potential.
Answer:
d. The ideal diode acts as a short circuit for forward currents and as an open circuit with reverse voltage applied.
Explanation:
Ideal diode acts like an ideal conductor. In case of forward voltage it acts like an ideal conductor. However when it is reverse biased then it behaves like an ideal insulator. You can understand it bu considering a switch. When the voltage is forward then ideal diode acts like a closed switch. When the voltage is reverse biased then ideal diode behaves like an open switch.
That is why we can say that the ideal diode acts as a short circuit (higher conduction) for forward currents and as an open circuit ( zero conduction) with reverse voltage applied.