What are your answer choices?
2. kinetic energy: due to it being transferred through collisions
To break this problem down, let's start with what we know. The equation given finds one component of the velocity and multiplies it by the change in time. This will not find the acceleration that the first two answers say it will, meaning that the answer isn't A or B.
That leaves us with the final two answers, C and D. If the projectile was launched horizontally and we were trying to find the horizontal displacement, we wouldn't need to use cosθ to find the horizontal velocity, meaning that our answer is most likely C) <span>the horizontal displacement of a projectile launched at an angle!</span><span />
You're most likely to build up enough static charge to receive a shock by walking around in a carpeted restaurant in the desert. (A)
Walking on carpet is the fastest way to accumulate charge, and the dry desert air prevents the charge from dribbling off of you and away.
When I walked on stones in the Sinai Desert, the dry wind with a little bit of sand or dust in it built up enough static charge on me that I got a shock every time I stood less than a foot away from my partner.
I had the same experience a few years later near Ouarzazate in the interior of Morocco.
When you hear people say "the desert is dry", they mean it's <em>DRY ! </em>
According to the statement we can deduce that the resulting amplitude of the wave pulse is zero when there is a destructive interference of two pulses and the chain is straight. At this point the potential energy will be zero, therefore when applying the energy conservation theorem, the potential energy must be equal to the kinetic energy and be conserved. The potential energy will be totally transferred as kinetic energy and therefore that will be the only energy present in the string.
Thus, the option C is correct.