Answer:
i = 4.9 A
Explanation:
The expression for the magnetic force in a wire carrying a current is
F = i L x B
bold letters indicate vectors.
The direction of the cable is towards the East, the direction of the magnetic field is towards the North, so the vector product is in the vertical direction (z-axis) upwards and the weight of the cable is vertical downwards. Let's apply the equilibrium condition
F - W = 0
i L B = m g
They indicate the linear density of the cable λ = 0.2 kg / m
λ = m / L
m = λ L
we substitute
i B = λ g
i = 
let's calculate
i = 0.2 9.8 / 0.4
i = 4.9 A
1) Vf = Vo - gt; Vf = 0 => Vo = gt = 9.8m/s^2 * 1.5s = 14.7 m/s
2) d = Vo*t - gt^2 /2 = 14.7m/s*1.5 - 9.8m/s^2 * (1.5s)^2 / 2 = 11.02 m
Jogging side by side since the speed is equal and the direction is the same i.e same velocity
A force of 660 n stretches a certain spring a distance of 0.300 m. what is the potential energy of the spring when a 70.0 kg mass hangs vertically from it?
Given data:
- It is a graphical display where the data is grouped in to ranges
- A diagram consists rectangles, whose area is proportional to frequency of a variable and whose width is equal to the class interval.
- It is an accurate representation of the distribution of numerical data.
<em>From Figure:</em>
Each box in the graph (small rectangle box) is assumed to be one download. So, in the graph the time between 8 p.m to 9 p.m, the number of downloads are 8.75 approximately (because the last box is incomplete, therefore 8 complete boxes and 9th is more than half).
<em>So, We conclude that the total number of downloads are approximately 9 in the time span of 8 p.m. to 9 p.m.</em>