Check the picture below.
now, you can pretty much count the units off the grid for the segments ST and RU, so each is 7 units long, and are parallel, meaning that the other two segments are also parallel, and therefore the same length each.
so we can just find the length for hmmmm say SR, since SR = TU, TU is the same length,
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ S(\stackrel{x_1}{-2}~,~\stackrel{y_1}{1})\qquad R(\stackrel{x_2}{-5}~,~\stackrel{y_2}{5})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ SR=\sqrt{[-5-(-2)]^2+[5-1]^2}\implies SR=\sqrt{(-5+2)^2+(5-1)^2} \\\\\\ SR=\sqrt{(-3)^2+4^2}\implies SR=\sqrt{25}\implies SR=5](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AS%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20%0AR%28%5Cstackrel%7Bx_2%7D%7B-5%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ASR%3D%5Csqrt%7B%5B-5-%28-2%29%5D%5E2%2B%5B5-1%5D%5E2%7D%5Cimplies%20SR%3D%5Csqrt%7B%28-5%2B2%29%5E2%2B%285-1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ASR%3D%5Csqrt%7B%28-3%29%5E2%2B4%5E2%7D%5Cimplies%20SR%3D%5Csqrt%7B25%7D%5Cimplies%20SR%3D5)
sum all segments up, and that's perimeter.
Since an equilateral triangle has 3 equal length sides, and in this case the total of these 3 sides is 24cm, the length of one side is 24/3 = 8cm
Answer:
(x + 3) = 9/2
Step-by-step explanation:
Here, we want to write an equation to find the length of the rectangle
Mathematically;
Area of rectangle = length * breadth
15 3/10 = (x + 3) * 3 2/5
(x + 3) = 15 3/10 divided by 3 2/5
(x + 3) = 153/10 * 5/17
(x + 3) = 9/2
Finding the Bearing<span> of a </span>Ship<span>
Example : A </span>ship<span> leaves the port of Miami with a </span>bearing<span> of S80◦E and a </span>speed<span> of. 15 knots. After 1 hour, the </span>ship<span> turns 90◦ toward the south.</span>