The easiest way to build a unit for energy is to remember that
'work' is energy, and
Work = (force) x (distance).
So energy is (unit of force) x (unit of distance)
[Energy] = (Newton) (meter) .
'Newton' itself is a combination of base units, so
energy is really
(kilogram-meter/sec²) (meter)
= kilogram-meter² / sec² .
That unit is so complicated that it's been given a special,
shorter name:
Joule .
It doesn't matter what kind of energy you're talking about.
Kinetic, potential, nuclear, electromagnetic, food, chemical,
muscle, wind, solar, steam ... they all boil down to Joules.
And if you generate, use, transfer, or consume 1 Joule of
energy every second, then we say that the 'power' is '1 watt'.
There are lots of variables that directly and indirectly contribute to the presence of gas on a surface
if the size of a planet is relatively small it will in turn be that of a smaller area which results in the less area to be covered for gas which basically means higher presence
I can go in depth more but I don't think that would be necessary all you need to know is this ...based on the size and gas will in turn be parallel to it's conformity
First you need to find the initial x component which is 13.02. After that you plug it into the 3rd formula on the AP physics formula sheet. Then rearrange it into the quadratic formula and solve for time. The answer should be 4.1 seconds.
When you square the "year" of each planet and divide it by the cube of its distance, or axis from the sun, the number would be the same for all the planets
Answer:
0.19m/s²
Explanation:
Initial velocity(u) = 50×1000/60×60
=13.88 m/s
Final velocity(v) = 36.5×1000/60×60
=10.13 m/s
Acceleration(a) = v-u/t
=10.13-13.88/19.5
a= -0.19m/s²
-a = 0.19m/s²
The magnitude of retar dation is 0.19m/s²