<h2>
Answer:53.63
</h2>
Explanation:
The equations of motion used in this question is 
When a object is projected horizontally from a sufficiently height,the x-component of acceleration remains zero because there is no force that drags the object in x direction.
But,due to gravity,the object accelerates downward at a rate of
.
In X-Direction,
Given that initial velocity=
=
Using
,

In Y-Direction,
Given that initial velocity=
=
Using
,



The answer is most likely A
Answer:
extrusive I'm pretty sure that's right
This is true due to the reaction that happens from water evaporating and leaving the sugar crystals behind to form.
To solve this problem it is necessary to apply the concepts related to the conservation of energy, through the balance between the work done and its respective transformation from the gravitational potential energy.
Mathematically the conservation of these two energies can be given through

Where,
W = Work
Final gravitational Potential energy
Initial gravitational Potential energy
When the spacecraft of mass m is on the surface of the earth then the energy possessed by it

Where
M = mass of earth
m = Mass of spacecraft
R = Radius of earth
Let the spacecraft is now in an orbit whose attitude is
then the energy possessed by the spacecraft is

Work needed to put it in orbit is the difference between the above two


Therefore the work required to launch a spacecraft from the surface of the Eart andplace it ina circularlow earth orbit is
