Time taken by proton to complete one complete circular orbit= 7.28 x 10⁻⁸ s
Explanation:
For proton, the centripetal force required for circular motion is provided by the magnetic force,
so Fm= Fc
q v B = m v²/r
m= mass of charged particle
v= velocity
B =magnetic field
q= charge
r= radius of circular path
v= q B r/m
now v= r ω
ω= angular velocity
ω r = q B r /m
ω=q B /m
now ω= 2π/T where T =time period
so 2π/T=q B/m
T= 2 πm/q B
T= 2π (1.67 x 10⁻²⁷)/ [( 1.6 x 10⁻¹⁹)* (0.9)]
T= 7.28 x 10⁻⁸ s
Answer:
The distance traveled by the faster car when it is 15 mins ahead of the slower car is 165 miles.
Explanation:
Given;
speed of the faster car, v₁ = 60 mi/h
speed of the slower car, v₂ = 55 mi/h
Let the distance traveled by the faster car when it is 15 mins ahead of the slower car = x miles

Note: divide 15 mins by 60 to convert to hours for consistency in the units.

Therefore, the distance traveled by the faster car when it is 15 mins ahead of the slower car is 165 miles.
The correct is D.
Explanation: The specific heat is defined as heat required to raise the temperature of a unit mass by one degree. Greater the specific heat, more is the heat required to raise the temperature for equal mass. So, the temperature of the material with lowest specific heat will increase the most for the same amount of heat energy.