Answer:
Time taken = 10400 s
Explanation:
Given:
Initial speed of the train, 
Final speed of the train, 
Displacement of the train, 
Using Newton's equation of motion,

Now, using Newton's equation of motion for displacement,

Now, plug in the value of
in the above equation. This gives,

Now, plug in 234000 m for
, 25 m/s for
and 20 m/s for
. Solve for
.

Therefore, the time taken by the train is 10400 s.
Answer : The change in enthalpy of the reaction is, -310 kJ
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given main reaction is,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

Now we will reverse the reaction 1 and multiply reaction 1 by 2, reaction 2 by 2 and reaction 3 by 3 then adding all the equations, we get :
(1)

(2)

(3)

The expression for enthalpy of formation of
will be,



Therefore, the change in enthalpy of the reaction is, -310 kJ
Answer: 0.258 N
Explanation:
As the density of the object is much less than the density of water, it’s clear that the buoyant force, is greater than the weight of the object, which means that in normal conditions, it would float in water.
So, in order to get the ball submerged in water, we need to add a downward force, that add to the weight, in order to compensate the buoyant force, as follows:
F = Fb – Fg
Fb= δH20* 4/3*π*(d/2)³ * g
Fg = δb* 4/3*π*(d/2)³ *g
F= (δH20- δb) * 4/3*π*(d/2)³*g
Replacing by the values of the densities, and the ball diameter, we finally get:
F= 0.258 N
Answer:A block rests on a horizontal, frictionless surface. A string is attached to the block, and is pulled with a force of 45.0 N at an…
Explanation:
Boyles law
Pressure and volume are inversely proportional as the new variable changes from the known.
Double the pressure equals 1/2 of original volume, assuming temperature remains the same.
So 40.0 mL is the new volume as it is compressed.