Answer:
Explanation:
The formula for this is
where F is the gravitational force, G is the gravitational constant, m1 is the mass of one object and m2 is the mass of the other object. We are looking for r, the distance between the centers of their masses.
Filling in:
and moving things around to solve for r:
Doing all that and rounding to the 3 sig fig's you need gives us a distance of 1.55 m
The formula for force exerted on/by a spring is
F = k*e where k is the spring constant and x is the distance stretched from
unstrained position. This should allow you to find what you need.
Using F = k x e,
where k is the spring constant,
and e is the extension,
The F is her weight = 45 X 0.80
= 36 N
The inner planets are the planets before the asteroid belt. They are also closer to the Sun. The outer planets are the ones after the asteroid belt. <span />
Answer:

Explanation:
Given data:



Let the distance traveled by the object in the second case be 
In the given problem, work done by the forces are same in both the cases.
Thus,




