Complete Question
The speed of a transverse wave on a string of length L and mass m under T is given by the formula

If the maximum tension in the simulation is 10.0 N, what is the linear mass density (m/L) of the string
Answer:

Explanation:
From the question we are told that
Speed of a transverse wave given by

Maximum Tension is 
Generally making
subject from the equation mathematically we have




Therefore the Linear mass in terms of Velocity is given by

Answer:
the spring be displaced by 25.0 cm
Explanation:
The computation is shown below:
As we know that
F= -K × x
So,

Now

= -0.250m
= 25.0 cm
Hence, the spring be displaced by 25.0 cm
Answer:
12.31 m/s
Explanation:
If we recall from the previous knowledge we had about speed,
we will know that:
speed = distance/ time.
As such:
The average speed of the rider bicycle is
average speed = total distance/ total time
Mathematically, it can be computed as:





Answer:
3.5m/s^2
Explanation:
From Newton's second Law of Motion
F = ma
Where F is the applied force, m is the mass of the object and a is the acceleration.
F = 350 N
Mass = 100kg
350N = 100×a
a = 350/100
a = 3.5m/s^2
The acceleration of the object will be 3.5m/s^2
It is fairly easy to build an electromagnet. All you need to do is wrap some insulated copper wire around an iron core. If you attach a battery to the wire, an electric current will begin to flow and the iron core will become magnetized. When the battery is disconnected, the iron core will lose its magnetism. Follow these steps.
Step 1 - Gather the Materials
One iron nail fifteen centimeters (6 in) long
Three meters (10 ft) of 22 gauge insulated, stranded copper wire
One or more D-cell batteries
Step 2 - Remove some Insulation
Step 3 - Wrap the Wire Around the Nail
Step 4 - Connect the Battery