When an object absorbs an amount of energy equal to Q, its temperature raises by

following the formula

where m is the mass of the object and

is the specific heat capacity of the material.
In our problem, we have

,

and

, so we can re-arrange the formula and substitute the numbers to find the specific heat capacity of the metal:
Answer:
3Q / 4 pi (R^3 - r^3)
Explanation:
Charge density = charge / volume
volume of a spherical shell = 
Answer:
The frequency of these waves is 
Explanation:
Given that,
Wavelength = 6.6 km
Distance = 8810 km
Time t = 8.67 hr
We need to calculate the velocity of sound
Using formula of velocity

Where, D = distance
T = time
Put the value into the formula


We need to calculate the frequency
Using formula of frequency


Put the value into the formula





Hence, The frequency of these waves is 
Answer:
a = 2.275 10⁻⁴ m
Explanation:
This is a diffraction problem that is described by the equation
a sin θ = m λ
The first dark minimum occurs for m = 1
a = λ / sin θ
The angle can be found by trigonometry,
tan θ = y / x
θ = tan⁻¹ y / x
Let's reduce the magnitudes to the SI system
y = 8.24 mm = 8.24 10⁻³ m
λ = 625 nm = 625 10⁻⁹ m
θ = tan⁻¹ 8.24 10⁻³ / 3.00
θ = 0.002747 rad
We calculate
a = 625 10⁻⁹ / sin 0.002747
a = 2.275 10⁻⁴ m
Answer:
Explanation:
Given
magnitude of vector=8.7 m/s
Direction 
Therefore vector x component is 
=-2.104
i.e. it is acting in negative x axis
vector y component
Therefore it lies in negative y axis
Judging vector x and y component
It lies in third quadrant