1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
15

A submarine sends a signal and receives an echo after 5 seconds. Calculate the speed of sound if distance of object from submari

ne
in 3625m.
Physics
2 answers:
quester [9]3 years ago
8 0
Distance of d object frm submarine = 3625m
time taken = 5/2

then speed = 3625/5/2. (speed = distance /time)
=> 1450m/s


seldon.
Reil [10]3 years ago
3 0

speed = distance \div time
Since the sound travels from the submarine to the object AND back, it actually travelled 3625x2=7250m.

7250 \div 5 = 1450
Speed of sound: 1450m/s
You might be interested in
A star’s parallax angle is 1.0. How far away is the star in light years?
larisa [96]
Distance = 2AU / tan1.0

If you mean 1.0 is in degrees, then Distance = 114.58 AU
7 0
2 years ago
Read 2 more answers
*Materials that regulate the flow of current through them *
4vir4ik [10]

Answer:

electromagnet

Explanation:

mark me as brainlest

3 0
2 years ago
Two metallic rods A and B of different materials have same length. The linear expansivity of A is 12×10–6 oC–1and cubical expans
uysha [10]

Answer:

The length of rod A will be <u>greater than </u>the length of rod B

Explanation:

We, know that the formula for final length in linear thermal expansion of a rod is:

L' = L(1 + ∝ΔT)

where,

L' = Final Length

L = Initial Length

∝ = Co-efficient of linear expansion

ΔT = Change in temperature

Since, the rods here have same original length and the temperature difference is same as well. Therefore, the final length will only depend upon the coefficient of linear expansion.

For Rod A:

∝₁ = 12 x 10⁻⁶ °C⁻¹

For Rod B:

∝₂ = β₂/3

where,

β₂ = Coefficient of volumetric expansion for rod B = 24 x 10⁻⁶ °C⁻¹

Therefore,

∝₂ = 24 x 10⁻⁶ °C⁻¹/3

∝₂ = 8 x 10⁻⁶ °C⁻¹

Since,

∝₁ > ∝₂

Therefore,

L₁ > L₂

So, the length of rod A will be <u>greater than </u>the length of rod B

6 0
3 years ago
After the big bang, atoms in gas clouds experienced a greater gravitational pull to each other than atoms in other regions of th
allsm [11]
Answer:
These are the two statements with scientific facts that explain the described phenomenon
<span>
Gravitation between two objects increases when the distance between them decreases.</span>

When the mass of an object increases, its gravitational pull also increases.

Justification:

Those two facts are represented in the Universal Law of Gravity discovered by the scientific Sir Isaac Newton (1642 to 1727) and published in his book <span>Philosophiae naturalis principia mathematica.</span>

That law is represented by the equation:

F = G × m₁ × m₂ / d²

The product of the two masses on the numerator accounts for the fact that the gravitational force is directly proportional to the product of the masses, which is that as the masses increase the attraction also increase.

The term d² (square of the distance that separates the objects) in the denominator accounts for the fact that the gravitational force is inversely proportional to the square of the distance; that is as the separation of the objects increase the gravitational force decrease.


6 0
3 years ago
The displacement of a wave traveling in the negative y-direction is D(y,t) = ( 4.60 cm ) sin ( 6.20 y+ 60.0 t ), where y is in m
trapecia [35]

Answer:

The question is incomplete, below is the complete question

"The displacement of a wave traveling in the negative y-direction is D(y,t) = ( 4.60cm ) sin ( 6.20 y+ 60.0 t ), where y is in m and t is in s.

A) What is the frequency of this wave?

B)  What is the wavelength of this wave?

C) What is the speed of this wave?"

Answers:

a.  f=\frac{30}{\pi }Hz\\

b. wavelength=\frac{\pi }{3.1}m \\

c. v=9.68m/s

Explanation:

The equation of a wave is represented as

D(x,t)=Asin(kx+wt) \\

Where A=amplitude

w=angular frequency=2πf

K=wave numbers =2π/λ

since we re giving he equation  D(y,t) = ( 4.60cm ) sin ( 6.20 y+ 60.0 t ),

we can compare and get the value for the wave number and angular frequency.

By comparing we have

w=60rads/s

k=6.20

a. to determine the frequency, from the expression fr angular wave frequency we have

w=2πf hence

f=w/2π

if we substitute we arrive at

f=\frac{60}{2\pi }\\f=\frac{30}{\pi }Hz\\

b. to determine the wave length, we use

k=\frac{2\pi }{wavelength} \\k=6.2\\wavelength=\frac{2\pi }{k} \\wavelength=\frac{2\pi }{6.2} \\wavelength=\frac{\pi }{3.1}m \\

c. the wave speed  v is express as the product of the frequency and the wavelength. Hence

v=frequency*wavelength \\v=\frac{30}{\pi } *\frac{\pi }{3.1}\\ v=9.68m/s

6 0
3 years ago
Other questions:
  • A disoriented physics professor drives 3.22 km north, then 4.75 km west, then 1.90 km south. find the magnitude and direction of
    11·1 answer
  • Laminar flow, where water moves in approximately straight-line paths, characterizes ________.
    14·1 answer
  • What will a spring scale read for the weight of a 58.0-kg woman in an elevator that moves (a) upward with constant speed 5.0 m/s
    12·2 answers
  • PLEASE HELP!! PHYSICS QUESTION-DOES ANYONE KNOW HOW TO DO THIS WITH THE WORKING OUT?!?
    14·1 answer
  • Calculate the mass (in g) of 0.8 cm³ of steel. The density of steel is 7.8 g/cm³. Give your answer to 2 decimal places.
    8·2 answers
  • When an atom loses an electron, the resulting particle is called
    6·1 answer
  • A student practicing for track ran 800 meter in 110 seconds. what was her speed?
    11·1 answer
  • Physics question plz help ASAP
    14·1 answer
  • Jonathan and Cody’s older brother Josh, who is pictured in the Figure below, is standing at the top of a half-pipe at Newton’s S
    6·1 answer
  • If a body has a velocity 50 m s-1
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!