Answer:
C
Explanation:
(c) The two cuts that are being roasted for each time-temperature combination are an example of replication.
In the question it is given that From 10 identical cuts of lamb, 2 are randomly selected to roast using each of the time-temperature combinations in the same oven. Here it is an act of copying the exact sahpe size of the lamb in all cuts, which is nothing but replication. Moreover, this replication can help in proper comparision.
The answer is letter c.
The explanation behind this is when human consumes a plant
or when a human being eats an animal that ate a plant. The chemical energy kept
in the plant (or animal) cells is progressed into the cells of the human's
body. All of the body progressions, like ingestion, breathing, pumping blood, are
driven by cells changing the kept chemical energy into heat and work, in a procedure
called respiration. In the muscle cells of the human (or any animal), the
chemical energy is converted into mechanical work and heat. The muscle pacts,
the legs thrust, and the body jumps into the air.
Answer:
Maharashtra - mashru or himroo / dhoti and lugda
Gujarat - patola / ghagra choli
Punjab - pat / kurta and pajama
Odisha - ikat / Sadi
West Bengal - tossa / kurta
Karnataka - Mysore silk / mundu
Answer:
The ball has an acceleration of -380 m/s², this means the ball slows down
An acceleration of -380 m/s² is the equivalent of 38.736 g's
Explanation:
Step 1: Data given
Velocity of the baseball at time t=0 = 38 m/s
At time t, the ball stops. This means v = 0
time before stops = 0.1s
Step 2: Calculate the acceleration
v= v0+at
with v= the velocity of the ball at time t = 0. v= 0
with v0 = the velocity of the ball at time t=0. v0 = 38 m/s
with a= the acceleration in m/s²
with t = time in seconds
0 = 38 + a*0.1
a = -380 m/s²
The ball has an acceleration of -380 m/s², this means the ball slows down
An acceleration of -380 m/s² is the equivalent of 38.736 g's
Explanation:
Image distance, v = -17 cm (-ve for virtual image)
Radius of curvature of concave mirror, R = 39 cm
Focal length, f = -19.5 cm (-ve for a concave mirror)
(a) Using mirror's formula as :


u = 132.6 cm
So, the object is placed 132.6 cm in front of the mirror.
(b) Magnification of the mirror, 

m = -0.128
Hence, this is the required solution.