Explanation:
using the formula: S=ut+½gt², where u=0, S=?, g=8m/s², t=10seconds.
S=ut+½gt² ("ut" term will cancel because u=0).
=> S= ½gt²
=>S = ½×8×10²
=>S = 4×100
=>S = 400m .
Therefore, the distance traveled by the body in 10s is 400m.
hope this helps you.
Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by

where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m

T = 20.0 N
Substituting into the equation, we find the fundamental frequency:

The next frequencies (harmonics) are given by

with n being an integer number and f being the fundamental frequency.
So we get:



<span>Last choice on the list:
Object A has a net charge of 0 because the positive and negative
charges are balanced.
Object B has a net charge of –2 because there is an imbalance of
charged particles (2 more negative electrons than positive protons).</span>
It took so long because at the time there was no way for people to study the behavior formally. im not sure what helped it get recognized but i know wihelm wundt helped get it recongnized.
sorry i couldnt be much help
<em>weight = (mass) x (gravity)</em>
Weight = (5.00 kg) x (9.81 m/s²)
weight = (5.00 x 9.81) (kg-m/s²)
<em>Weight = 49.05 Newton</em>