Answer:D. 9.1 mole Ar
Explanation:
364 g Ar x 1 mole Ar / 40 g Ar
= 9.1 moles Ar
Answer:
The speed of light is the speed at which light travels. No, an object cannot move at the speed of light.
Explanation:
The speed of light is 186,000 miles per second. An object with mass cannot move at the speed of light since it would take an infinite amount of energy to achieve that velocity, since only massless particles can travel at the speed of light. Also, you would have to factor in air friction, meaning even if an object were to reach such high speeds, it would instantly disintegrate.
Answer:
9.8 × 10²⁴ molecules H₂O
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Organic</u>
<u>Stoichiometry</u>
- Analyzing reaction rxn
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[RxN - Unbalanced] CH₄ + O₂ → CO₂ + H₂O
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 130 g CH₄
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[RxN] 1 mol CH₄ → 2 mol H₂O
[PT] Molar Mass of C: 12.01 g/mol
[PT] Molar Mass of H: 1.01 g/mol
Molar Mass of CH₄: 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Stoichiometry</u>
- [DA] Set up conversion:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
9.75526 × 10²⁴ molecules H₂O ≈ 9.8 × 10²⁴ molecules H₂O
<h3><u>Answer;</u></h3>
Acids; HCl and HC5H5N+
Bases; C5H5N and Cl-
<h3><u>Explanation;</u></h3>
- According to Bronsted-Lowry Theory an acid is a proton or hydrogen ion donor while a base is a proton or a hydrogen ion acceptor.
- In this case,<u> both HCl and HC5H5N+ are acids</u> as <u>they are donors of hydrogen ions</u>. HCl is an acid to the forward reaction while HC5H5N+ is a acid to the reverse reaction.
- On the other hand, <u>C5H5N and Cl- are bases</u>, <u>they are acceptors of hydrogen ions</u>. Cl- is a base in the reverse reaction while C5H5N is a base in the forward reaction.
And the significant amount of volume can be differed by its solitude