Explanation:
Entropy means the amount of randomness present within the molecules of the body of a substance.
Relation between entropy and microstate is as follows.
S = 
where, S = entropy
= Boltzmann constant
= number of microstates
This equation only holds good when the system is neither losing or gaining energy. And, in the given situation we assume that the system is neither gaining or losing energy.
Also, let us assume that
= 1, and
= 0.833
Therefore, change in entropy will be calculated as follows.

= 
= 
= 
or, = 
Thus, we can conclude that the entropy change for a particle in the given system is
J/K particle.
Answer:
V₂ = 946.72 mL
Explanation:
Given data;
Initial pressure = 0.926 atm
Initial volume = 457 mL
Temperature = constant = 29.5°C
Final pressure = 0.447 atm
Final volume = ?
Solution:
The given problem will be solved through the Boyle's law,
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
by putting values,
P₁V₁ = P₂V₂
0.926 atm × 457 mL = 0.447 atm × V₂
V₂ = 423.18 atm. mL/ 0.447 atm
V₂ = 946.72 mL
Answer:

Explanation:
Hello,
In this case, for such formation of sulfur hexafluoride, the standard enthalpy of formation is -1220.47 kJ/mol (data extracted from NIST database). Next, we compute the moles in 10.0 grams of sulfur hexafluoride as shown below:

Next, for the given energy, we compute the total heat that is liberated:

Finally, we conclude such symbol has sense since negative heat is related with liberated heat.
Best regards.
Answer:
attractive force
Explanation:
hope this helps, pls mark brainliest :D
Answer:
The total pressure is 27.8 atm
Explanation:
From the ideal gas equation,
PV = nRT
P (total pressure) = nRT/V
n (total moles of gases) = (6/1 moles of hydrogen) + (15.2/14 moles of nitrogen) + (16.8/4 moles of helium) = 6+1.1+4.2 = 11.3 moles
R = 0.082057L.atm/gmol.K, T = 27°C = 27+273K = 300K, V = 10L
P = 11.3×0.082057×300/10 = 27.8 atm