Answer: V = 33.9 L
Explanation: We will use Charles Law to solve for the new volume.
Charles Law is expressed in the following formula. Temperatures must be converted in Kelvin.
V1 / T1 = V2 / T2 then derive for V2
V2 = V1 T2 / T1
= 35 L ( 308 K ) / 318 K
= 33.9 L
(B. 3) 172 All nonzero digits are significant.
(A. 4) 450.0 x 10^3 Trailing zeroes after the decimal point are significant.
(A. 4) 3427 All nonzero digits are significant.
(B. 3) 0.0000455 Leading zeroes are not significant.
(B. 3) 0.00456 Leading zeroes are not significant.
(C. 5) 2205.2 Zeroes between nonzero digits are significant.
(C. 5) 107.20 Trailing zeroes after the decimal point are significant.
(B. 3) 0.0473 Leading zeroes are not significant.
You can't really describe it but this is what it looks like http://www.chemspider.com/Chemical-Structure.453291.html
Answer:
ΔH = 2.68kJ/mol
Explanation:
The ΔH of dissolution of a reaction is defined as the heat produced per mole of reaction. We have 3.15 moles of the solid, to find the heat produced we need to use the equation:
q = m*S*ΔT
<em>Where q is heat of reaction in J,</em>
<em>m is the mass of the solution in g,</em>
<em>S is specific heat of the solution = 4.184J/g°C</em>
<em>ΔT is change in temperature = 11.21°C</em>
The mass of the solution is obtained from the volume and the density as follows:
150.0mL * (1.20g/mL) = 180.0g
Replacing:
q = 180.0g*4.184J/g°C*11.21°C
q = 8442J
q = 8.44kJ when 3.15 moles of the solid react.
The ΔH of the reaction is:
8.44kJ/3.15 mol
= 2.68kJ/mol
The choices are true about the characteristic of a strong base, except for it having a concentration of above 1.0 M. Therefore, the answer is letter A. The concentration of the base is not a very important as to how strong really the base is.