Answer:
See bolded below.
Explanation:
Consider the " Before " and " After. " " Before, " this particle 1 was trying to catch up with this particle 2, and " after " particle one had collided with particle two. Take a look at the attachment below for a more detailed examination.
Here is how this will play out. Particle 1, with great velocity, will hit particle 2, which would mean that Particle 2 has less velocity than Particle 1. Now after the collision, energy is transferred to Particle 2, and while Particle 1 has now stopped in it's tracks, Particle 2 - with more energy than before - will continue as long as it has to before friction eventually brings it to a stop.
_______________________________________________________
From this we can conclude that Vf, from the picture below, must have less energy than V1, but more energy than V2 - and vice versa.
Answer:
D. 3 hours or more
Explanation:
The average 8- to 18-year-old spends at least D. 3 hours every day in front of a screen, performing little to no physical activity. This is because, instead of exercising and socializing with their peers, children and teenagers frequently talk, watch a lot of movies/shows, or play video games on their computers. Unfortunately, this is typically considerably more than three hours every day. Although some children still prefer physical activities over this, the bulk of the population does not.
(a) No, because the mechanical energy is not conserved
Explanation:
The work-energy theorem states that the work done by the engine on the airplane is equal to the gain in kinetic energy of the plane:
(1)
However, this theorem is only valid if there are no non-conservative forces acting on the plane. However, in this case there is air resistance acting on the plane: this means that the work-energy theorem is no longer valid, because the mechanical energy is not conserved.
Therefore, eq. (1) can be rewritten as

which means that the work done by the engine (W) is used partially to increase the kinetic energy of the airplane (
) and part is lost because of the air resistance (
).
(b) 77.8 m/s
First of all, we need to calculate the net force acting on the plane, which is equal to the difference between the thrust force and the air resistance:

Now we can calculate the acceleration of the plane, by using Newton's second law:

where m is the mass of the plane.
Finally, we can calculate the final speed of the plane by using the equation:

where
is the final velocity
is the initial velocity
is the acceleration
is the distance travelled
Solving for v, we find

Answer:
check image
Explanation:
For any question related to newons law of motion first draw the free body diagram(FBD),
Answer:
b. 9.5°C
Explanation:
= Mass of ice = 50 g
= Initial temperature of water and Aluminum = 30°C
= Latent heat of fusion = 
= Mass of water = 200 g
= Specific heat of water = 4186 J/kg⋅°C
= Mass of Aluminum = 80 g
= Specific heat of Aluminum = 900 J/kg⋅°C
The equation of the system's heat exchange is given by

The final equilibrium temperature is 9.50022°C