For the work-energy theorem, the work needed to stop the bus is equal to its variation of kinetic energy:

where
W is the work
Kf is the final kinetic energy of the bus
Ki is the initial kinetic energy of the bus
Since the bus comes at rest, its final kinetic energy is zero:

, so the work done by the brakes to stop the bus is

And the work done is negative, because the force applied by the brake is in the opposite direction to that of the bus motion.
Answer: 2.86 m
Explanation:
To solve this question, we will use the law of conservation of kinetic and potential energy, which is given by the equation,
ΔPE(i) + ΔKE(i) = ΔPE(f) + ΔKE(f)
In this question, it is safe to say there is no kinetic energy in the initial state, and neither is there potential energy in the end, so we have
mgh + 0 = 0 + KE(f)
To calculate the final kinetic energy, we must consider the energy contributed by the Inertia, so that we then have
mgh = 1/2mv² + 1/2Iw²
To get the inertia of the bodies, we use the formula
I = [m(R1² + R2²) / 2]
I = [2(0.2² + 0.1²) / 2]
I = 0.04 + 0.01
I = 0.05 kgm²
Also, the angular velocity is given by
w = v / R2
w = 4 / (1/5)
w = 20 rad/s
If we then substitute these values in the equation we have,
0.5 * 9.8 * h = (1/2 * 0.5 * 4²) + (1/2 * 0.05 * 20²)
4.9h = 4 + 10
4.9h = 14
h = 14 / 4.9
h = 2.86 m
Measurement means weight, size, length, or capacity of something.
Answer:
On the standing waves on a string, the first antinode is one-fourth of a wavelength away from the end. This means

This means that the relation between the wavelength and the length of the string is

By definition, this standing wave is at the third harmonic, n = 3.
Furthermore, the standing wave equation is as follows:

The bead is placed on x = 0.138 m. The maximum velocity is where the derivative of the velocity function equals to zero.


For this equation to be equal to zero, sin(59.94t) = 0. So,

This is the time when the velocity is maximum. So, the maximum velocity can be found by plugging this time into the velocity function:
