<span>A measurement must include both a number and an unit of measurement.
</span>
That is because work requires energy. According to the law of conservation of energy, it cannot be created or destroyed. When doing work, energy change forms and gets transferred to the object until it is released.
for example, when you lift up an object and place it on a higher elevation, you transferred energy to it and gave it potential energy. The potential energy is transformed into kinetic energy when the object falls down, and if it hits a surface, the energy will scatter, vibrating the areas around it and producing sound.
Also, work= force X distance. The energy does not go away, but rather get changed into some other form of energy
Hello!
Recall the equation for gravitational force:

Fg = Force of gravity (N)
G = Gravitational constant
m1, m2 = masses of objects (kg)
r = distance between the objects' center of masses (m)
There is a DIRECT relationship between mass and gravitational force.
We are given:

If we were to double one mass and triple another, according to the equation:

Thus:

Answer:Magnetic fields are invisible, at least usually. But scientists from NASA's Space Sciences Laboratory have made them visible as "animated photographs," using sound-controlled CGI and 3D compositing.
Explanation:
(a) 
<u>Explanation:</u>
Given:
Moment of Inertia of m₁ about the axis, I₁ = m₁x²
Moment of Inertia of m₂ about the axis. I₂ = m₂ (L - x)²
Kinetic energy is rotational.
Total kinetic energy is 
Work done is change in kinetic energy.
To minimize E, differentiate wrt x and equate to zero.

Alternatively, work done is minimum when the axis passes through the center of mass.
Center of mass is at 