Answer:
The moment of inertia about the rotation axis is 117.45 kg-m²
Explanation:
Given that,
Mass of one child = 16 kg
Mass of second child = 24 kg
Suppose a playground toy has two seats, each 6.1 kg, attached to very light rods of length r = 1.5 m.
We need to calculate the moment of inertia
Using formula of moment of inertia


m = mass of seat
m₁ =mass of one child
m₂ = mass of second child
r = radius of rod
Put the value into the formula


Hence, The moment of inertia about the rotation axis is 117.45 kg-m²
Answer:
B) The same as the momentum change of the heavier fragment.
Explanation:
Since the initial momentum of the system is zero, we have
0 = p + p' where p = momentum of lighter fragment = mv where m = mass of lighter fragment, v = velocity of lighter fragment, and p' = momentum of heavier fragment = m'v' where m = mass of heavier fragment = 25m and v = velocity of heavier fragment.
0 = p + p'
p = -p'
Since the initial momentum of each fragment is zero, the momentum change of lighter fragment Δp = final momentum - initial momentum = p - 0 = p
The momentum change of heavier fragment Δp' = final momentum - initial momentum = p' - 0 = p' - 0 = p'
Since p = -p' and Δp = p and Δp' = -p = p ⇒ Δp = Δp'
<u>So, the magnitude of the momentum change of the lighter fragment is the same as that of the heavier fragment. </u>
So, option B is the answer
Answer:
The mass of object is calculated as 5.36 kg
Explanation:
The known terms to find the mass are:
acceleration of object (a) = 22.35 
Force exerted (F) = 120N
mass of an object (m) = ?
From Newton's second law of motion;
F = ma
or, 120 = m × 22.35
or, m=
kg
∴ m = 5.36 kg
Explanation:
Artificial gravity can be created using a centripetal force. A centripetal force directed towards the center of the turn is required for any object to move in a circular path. In the context of a rotating space station it is the normal force provided by the spacecraft's hull that acts as centripetal force.
Hope it helps.
Answer: 26.67 m/s
Explanation:
Given
Length traveled by the ball 
Time taken to reach the goal post is 
Initial velocity 
Using the second equation of motion

Now using

The velocity of ball will be 26.67 m/s