The ball orbit the Earth, when launched from the theoretical cannon of Newton, is option B. it is magnetically attracted.
<h3>Newton's Cannonball:</h3>
Newton's cannonball was a hypothetical situation. Isaac Newton once proposed that gravity, which he believed to be a universal force, was the primary factor behind the planetary motion. In this experiment, Newton imagines projecting a stone or a cannonball onto the summit of a very tall mountain. The body should move away from Earth in the direction it was projected if there were no effects from gravity or air resistance.
Depending on the projectile's initial velocity and the gravitational force acting on it, the bullet will travel in a different direction. Low speeds result in a simple fallback to Earth. The Earth's surface causes the cannonball to deviate from its elliptical route.
Learn more about Newton's Cannonball here:
brainly.com/question/18776112
#SPJ1
Answer:
PART A: option b. .43nm
PART B: option d. 0.11nm
PART C: option c. The wavelengths of visible light are too long compared to the atomic spacing.
Explanation:
Given data
Wavelength λ = 0.20 nm
Angle θ = 0.8 rad
(a)
wavelength of x-ray to give maximum at the same location
λ₂ = m λ
Here, m = 2 is the interference fringe order.
Substitute the values in the above equation.
λ₂ = 2 × 0.2
= 0.4 nm
Hence, the wavelength of x-ray to give maximum at the same location is 0.4nm
(b)
The crystal plane separation is equal to d
The value of θ is equal to 0.8 rad.
Convert rad into degree as follows:
0.8 rad =
= 144°/π = 45.86°
Solve for d, using equation (1) as follows:
2dsinθ = mλ
d = mλ / 2sinθ
d = (1) 0.17 / 2Sin45.86°
d = 0.17 / 1.9065
d = 0.089 nm
(c)
The visible light can not be used to study the structure of proteins because of the high wavelength of the visible light.
I think the answer is constant
She covered 25 meters in 10 seconds.
Her SPEED is (25 m) / (10 s) = 2.5 m/s .
We don't have any way to describe her velocity, because we don't know what DIRECTION she ran.