Electron configurations:
Ge: [Ar] 3d10 4s2 4p2 => 6 electrons in the outer shell
Br: [Ar] 3d10 4s2 4p5 => 7 electrons in the outer shell
Kr: [Ar] 3d10 4s2 4p6 => 8 electrons in the outer shell
The electron affinity or propension to attract electrons is given by the electronic configuration. Remember that the most stable configuration is that were the last shell is full, i.e. it has 8 electrons.
The closer an atom is to reach the 8 electrons in the outer shell the bigger the electron affinity.
Of the three elements, Br needs only 1 electron to have 8 electrons in the outer shell, so it has the biggest electron affinity (the least negative).
Ge: needs 2 electrons to have 8 electrons in the outer shell, so it has a smaller (more negative) electron affinity than Br.
Kr, which is a noble gas, has 8 electrons and is not willing to attract more electrons at all, the it has the lowest (more negative) electron affinity of all three to the extension that really the ion is so unstable that it does not make sense to talk about a number for the electron affinity of this atom.
The sphere slow down due to friction force between the surface of the sphere and the surface on that the sphere is rolling . The friction force acting against the motion of the sphere. Thats why it is slowed down. In fact not only a sphere, anything can not slow down untill a force act against it's motion.
Answer:
Hydraulic pressure exerted on glass slab, ρ=10 atm
Bulk modulus of glass, B=37×10^9 Nm^−2
Bulk modulus, B=P/(ΔV/V)
where,
ΔV/V= Fractional change in volume
ΔV/V=P/B
=10×1.013×10^5 /(37×10 ^9)
=2.73×10^-5
Therefore, the fractional change in the volume of the glass slab is 2.73×10^-5
Hope it helps
Answer:
f = 0.283
Explanation:
With the given values x=5m and t=2s, the acceleration a of the block must be:
(1) 
The sum of all forces in the inclined plane must be:
(2) 
Solving equation2 for the acceleration a:
(3) 
Using equations 1 and 3 to solve for f:

Wind is caused by differences in the atmospheric pressure. When a difference in atmospheric pressure exists, air moves from the higher to the lower pressure area, resulting in winds of various speeds. On a rotating planet, air will also be deflected by the Coriolis effect, except exactly on the equator.