Answer:
Zinc nitrate gives white ppt. which dissolves in excess ammonium hydroxide and produce a colorless solution whereas lead nitrate gives a chalky white ppt. of lead hydroxide which doesnot dissolve.
Explanation:
Hope this helps :)
Answer:
for the reaction is -186.75 J/K
Explanation:
Change in entropy (
) for the given reaction under standard condition is given by-
= ![[3\times S_{rhombic}^{0}_{(s)}]+[2\times S_{H_{2}O}^{0}_{(g)}]-[2\times S_{H_{2}S}^{0}_{(g)}]-[1\times S_{SO_{2}}^{0}_{(g)}]](https://tex.z-dn.net/?f=%5B3%5Ctimes%20S_%7Brhombic%7D%5E%7B0%7D_%7B%28s%29%7D%5D%2B%5B2%5Ctimes%20S_%7BH_%7B2%7DO%7D%5E%7B0%7D_%7B%28g%29%7D%5D-%5B2%5Ctimes%20S_%7BH_%7B2%7DS%7D%5E%7B0%7D_%7B%28g%29%7D%5D-%5B1%5Ctimes%20S_%7BSO_%7B2%7D%7D%5E%7B0%7D_%7B%28g%29%7D%5D)
So
=
= -186.75 J/K
In a chemical reaction, the difference between the potential energy of the products and the potential energy of the reactants is equal to the heat of the reaction<span>. This is, the net energy released or absorbed (change) during a chemical reaction is the sum of the potential energy of the products less the sum of the potential energy of the reactants.</span>
There is a shortcut trick while doing such fill in the blanks of nuclear reactions of hydrogen and helium
Let a,b,care elements of set N

Now
for our question
Hence b=4-3+1=1+1=2
So
The missing place should b e deuterium of heavy water
In nuclear reactions energy is released so it's mentioned on product side not reactant side