it will expand as water moves into it.
Answer:
Newton's third law of motion states that every action, there is an equal and opposite reaction force and that forces come in pairs
Answer:
0.29 mol/L
Explanation:
Its density is 1.029 g/ml so in a liter (1000 mL) there is 1029 g of solution, but only 5% is dextrose.
0.05x1029=51.45
So in a liter of D5W solution there is 51.45 g of dextrose.
Dextrose molar mass iss 180.156 g/mol, so in 51.45 g of dextrose there is
51.45/180.156=0.29 mol
In one liter of solution there is 0.29 mol of dextrose, so the molarity of such solution is 0.29 mol/L.
Heat required : 4.8 kJ
<h3>Further explanation
</h3>
The heat to change the phase can be formulated :
Q = mLf (melting/freezing)
Q = mLv (vaporization/condensation)
Lf=latent heat of fusion
Lv=latent heat of vaporization
The heat needed to raise the temperature
Q = m . c . Δt
1. heat to raise temperature from -20 °C to 0 °C

2. phase change(ice to water)

3. heat to raise temperature from 0 °C to 25 °C


95.6 cal
are needed.
Explanation:
Use the following equation:
q
=
m
c
Δ
T
,
where:
q
is heat energy,
m
is mass,
c
is specific heat capacity, and
Δ
T
is the change in temperature.
Δ
T
=
T
final
−
T
initial
Known
m
=
125 g
c
Pb
=
0.130
J
g
⋅
∘
C
T
initial
=
17.5
∘
C
T
final
=
42.1
∘
C
Δ
T
=
42.1
∘
C
−
17.5
∘
C
=
24.6
∘
C
Unknown
q
Solution
Plug the known values into the equation and solve.
q
=
(
125
g
)
×
(
0.130
J
g
⋅
∘
C
)
×
(
24.6
∘
C
)
=
400. J
(rounded to three significant figures)
Convert Joules to calories
1 J
=
0.2389 cal
to four significant figures.
400
.
J
×
0.2389
cal
1
J
=
95.6 cal
(rounded to three significant figures)
95.6 cal
are needed.