It is the acceleration of an object in free fall
Explanation:
When an object is in free fall, it is subjected only to one force: the force of gravity, which pulls the object downward, with a magnitude (near the Earth's surface) which is given by

where
m is the mass of the object
is the acceleration due to gravity
We can apply Newton's second law to the object in free fall:

where
F is the net force on the object
a is the acceleration of the object
m is the mass
However, since there is only the force of gravity acting on the object, the net force is equal to the force of gravity: so we can equate the two equations, obtaining that

Which means that the acceleration of an object in free fall (acted upon the force of gravity only) is equal to the acceleration due to gravity,
.
Learn more about gravity:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
Δ h = 52.78 m
Explanation:
given,
Atmospheric pressure at the top of building = 97.6 kPa
Atmospheric pressure at the bottom of building = 98.2 kPa
Density of air = 1.16 kg/m³
acceleration due to gravity, g = 9.8 m/s²
height of the building = ?
We know,
Δ P = ρ g Δ h
(98.2-97.6) x 10³ = 1.16 x 9.8 x Δ h
11.368 Δ h = 600
Δ h = 52.78 m
Hence, the height of the building is equal to 52.78 m.
Answer:
lowest frequency = 535.93 Hz
distance between adjacent anti nodes is 4.25 cm
Explanation:
given data
length L = 32 cm = 0.32 m
to find out
frequency and distance between adjacent anti nodes
solution
we consider here speed of sound through air at room temperature 20 degree is approximately v = 343 m/s
so
lowest frequency will be =
..............1
put here value in equation 1
lowest frequency will be =
lowest frequency = 535.93 Hz
and
we have given highest frequency f = 4000Hz
so
wavelength =
..............2
put here value
wavelength =
wavelength = 0.08575 m
so distance =
..............3
distance =
distance = 0.0425 m
so distance between adjacent anti nodes is 4.25 cm
Answer:
E= -3.166 cosωt V
Explanation:
Given that
I = Imax sinωt
L= 8.4 m H
Imax= 4 A
f = ω/2π = 60.0 Hz
ω = 120π rad/s
We know that self induce E given as




E= -3166.72 cosωt m V
E= -3.166 cosωt V
This is the induce emf.