(a) The period of the oscillation is 0.8 s.
(b) The frequency of the oscillation is 1.25 Hz.
(c) The angular frequency of the oscillation is 7.885 rad/s.
(d) The amplitude of the oscillation is 3 cm.
(e) The force constant of the spring is 148.1 N/m.
The given parameters:
- <em>Mass of the ball, m = 2.4 kg</em>
<em />
From the given graph, we can determine the missing parameters.
The amplitude of the wave is the maximum displacement, A = 3 cm
The period of the oscillation is the time taken to make one complete cycle.
T = 0.8 s
The frequency of the oscillation is calculated as follows;

The angular frequency of the oscillation is calculated as follows;

The force constant of the spring is calculated as follows;

Learn more about general wave equation here: brainly.com/question/25699025
Answer:
Myocardium. That is the type. (srry i was in a rush hope this helps)
F = ma
We have mass = 20kg
And we need to solve for acceleration
So acceleration is change in velocity over time, in this case we have one velocity and we can assume the man started from rest so
12.3 / 0.9 = a
a = 13.6667
Now we can plug that into F = ma
F = (20)(13.6667)
F = 273.334
Rounding
F = 273.33
Now he is traveling east so we need a force towards the rest, or in the opposite direction to stop his motion.
If we assume east is the positive direction then we need a force of
-273.33 N to stop the man or 273.33 towards the west.
Microorganisms and all other living organisms are told to be procarotics
Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation. A free-body diagram is a special example of the vector diagrams