Your answer is B. The human eye can only detect color and Tv waves
First
let us imagine the projectile launched at initial velocity V and at angle
θ relative to the horizontal. (ignore wind resistance)
Vertical component y:
The
initial vertical velocity is given as Vsinθ
The moment the projectile reaches the maximum
height of h, the vertical velocity
will be 0, therefore the time t taken to attain this maximum height is:
h = Vsinθ - gt
0 = Vsinθ - gt
t = (Vsinθ)/g
where
g is acceleration due to gravity
Horizontal component x:
The initial horizontal velocity is given as Vcosθ. However unlike
the vertical component, this horizontal velocity remains constant because this is unaffected by gravity. The time to travel the
horizontal distance D is twice the value of t times the horizontal velocity.
D = Vcosθ*[(2Vsinθ)/g]
D = (2V²sinθ cosθ)/g
D = (V²sin2θ)/g
In order for D (horizontal distance) to be
maximum, dD/dθ = 0
That is,
2V^2 cos2θ / g = 0
And since 2V^2/g must not be equal to zero, therefore cos(2θ) = 0
This is true when 2θ = π/2 or θ = π/4
Therefore it is now<span> shown that the maximum horizontal travelled is attained when
the launch angle is π/4 radians, or 45°.</span>
Answer:
250 N
433 N
Explanation:
N = Normal force by the surface of the inclined plane
W = Weight of the block = 500 N
f = static frictional force acting on the block
Parallel to incline, force equation is given as
f = W Sin30
f = (500) Sin30
f = 250 N
Perpendicular to incline force equation is given
N = W Cos30
N = (500) Cos30
N = 433 N
The Electromagnetic ave that is about the size of humans is : A typical micro waves have around 14 inches ( 1.1 meter) in height.
This is very similar to the height of human right before we hit puberty (around 9 - 10 years old)
Answer:
f(x)=a(x - h)2 + k
Much like a linear function, k works like b in the slope-intercept formula. Like where add or subtract b would determine where the line crosses, in the linear, k determines the vertex of the parabola. If you're going to go up 2, then you need to add 2.
The h determines the movement horizontally. what you put in h determines if it moves left or right. To adjust this, you need to find the number to make the parentheses equal 0 when x equals -2 (because moving the vertex point to the left means subtraction/negatives):
x - h = 0
-2 - h = 0
-h = 2
h = -2
So the function ends up looking like:
f(x)=a(x - (-2))2 + 2
Subtracting a negative cancels the signs out to make a positive:
f(x)=a(x + 2)2 + 2Explanation: