Answer: 1) only a salt and water
An acid and base reacts together to undergo neutralization to form salt and water.

where HCl is an acid and NaOH is a base to form salt (NaCl) and water
.
Answer: 2) The formula of the hydrogen ion is often written as
.
All acids dissociate in water to give
ions.
Answer: 3) Arrhenius acids are substances that ionizes to yield protons in aqueous solution.

Arrhenius bases are substance that ionizes to yield hydroxide ions in aqueous solution.

Answer: 4) A conjugate acid base pair transfers hydrogen ion.
Here
accepts a proton and thus act as a base and the corresponding
is its conjugate acid.
Answer: 5) Bronsted Lowry acid is a substance that donates protons. Bronsted Lowry base is a substance that accepts protons.
and 

is a acid which accepts proton and thus acts as base to form conjugate acid
.
This problem is providing the ratio of nitrogen to oxygen by mass in nitrogen monoxide, NO, as 7.0:8.0 and asks for the same ratio but in NO₂ and N₂O₇. After doing the calculations, the results are 7.0:16.0 and 1.0:4.0 respectively.
<h3>Mass ratios:</h3>
In chemistry, one can calculate the mass ratios in chemical formulas according to the atomic mass of each atom. In such a way, one knows the mass ratio of nitrogen to oxygen in NO is 7.0:8.0 because we divide the atomic mass of nitrogen by oxygens:

Now, for chemical formulas with subscripts, one must multiply the atomic mass of the element by the subscript in the formula, which is the case of NO₂ and N₂O₇ as shown below:

Therefore, the results for NO₂ and N₂O₇ are 7.0:16.0 and 1.0:4.0 respectively
Learn more about atomic masses: brainly.com/question/5566317
Answer:
7.146
Explanation:
use the equilibrium equation
Answer:
A. 1, 2, 5
Explanation:
Count the number of Ns in the formula.
- Hope that helped! Please let me know if you need a further explanation.
Answer:
Dihydrogen monoxide is one of the scientific names of water having the formula H2O, where H2 "dihydrogen" is a double hydrogen (Latin Hydrogenium — hydrogen), and O is "monoxide" (oxygen).