The heart rate will likely decrease. As the cardiac muscle, or heart, gets stronger, it takes less effort to pump more blood. As a result, the heart will probably beat less, decreasing the heart rate. This is why athletes often have lower heart rates than the average person.
Answer:
λ = 5940 Angstroms
Explanation:
This is an exercise of the relativistic Doppler effect
f’= f √((1- v / c) / (1 + v / c))
Where the speed in between the strr and the observer is positive if they move away
Let's use the relationship
c = λ f
f = c /λ
We replace
c /λ’ = c /λ √ ((1- v / c) / (1 + v / c))
λ = λ’ √ ((1- v / c) / (1 + v / c))
Let's calculate
v = 0.01 c
v = 0.01 3 10⁸
v= 3 10⁶ m / s
λ = 6000 √ [(1- 3 10⁶/3 10⁸) / (1+ 3 10⁶/3 10⁸)]
λ = 6000 √ [0.99 / 1.01]
λ = 5940 Angstroms
The S.I. unit for the measure of the pressure is the Pascal (Pa). 1 Pascal corresponds to

We can convert the number given by the problem into Pascal:

And since

, we have
Answer: idk that is a tough one!
Explanation: that is a hard question IDK
Answers :
Explanation:
Given that.
First cylinder data
Inertial I₁ = 2.4 kgm²
angular speed ω₁ = 5.8 rad/s.
Second cylinder data
inertia I₂ = 1.3 kgm²
angular speed ω₂ = 7.0 rad/s.
If the cylinders couple so they have the same rotational axis, what is the angular speed of the combination (in rad/s)?
So, the cylinder couple and move together with the same angular speed
Then, using conservation of angular momentum
L(final) = L(initial)
(I₁ + I₂) • ω = I₁•ω₁ + I₂ω₂
(2.4+1.3)•ω = 2.4 × 5.8 + 1.3 × 7
3.7•ω = 23.02
ω = 23.02 / 3.7
ω = 6.22 rad/s
The combine angular speed of the cylinder is 6.22 rad/s