Answer:
The work done by this engine is 800 cal
Explanation:
Given:
100 g of water
120°C final temperature
22°C initial temperature
30°C is the temperature of condensed steam
Cw = specific heat of water = 1 cal/g °C
Cg = specific heat of steam = 0.48 cal/g °C
Lw = latent heat of vaporization = 540 cal/g
Question: How much work can be done using this engine, W = ?
First, you need to calculate the heat that it is necessary to change water to steam:

Here, mw is the mass of water

Now, you need to calculate the heat released by the steam:

The work done by this engine is the difference between both heats:

Pretty sure it is weather :))
A prediction is a guess of something happening in the future.
Answer:
the reason for the acceleration month that the coefficient of kinetic friction is less than the coefficient of satic frictionExplanation:
This exercise uses Newton's second law with the condition that the acceleration is zero, by the time the body begins to slide. At this point the balance of forces is
fr- w || = 0
The expression for friction force is that it is proportional to the coefficient of friction by normal.
fr = μ N
When the system is immobile, the coefficient of friction is called static coefficient and has a value, this is due to the union between the surface, when the movement begins some joints are broken giving rise to coefficient of kinetic friction less than static.
In consequence a lower friction force, which is why the system comes out of balance and begins to accelerate.
μ kinetic <μ static
In all this movement the normal with changed that the angle of the table remains fixed.
Consequently, the reason for the acceleration month that the coefficient of kinetic friction is less than the coefficient of satic friction
When the force of air resistance on the skydiver
is equal to the skydiver's weight.