Brushes, battery terminals, commutator, armature, magnets
Answer:
Option A
The cost of keeping the semiconductor below the critical temperature is unreasonable
Explanation:
First of all, we need to understand what superconductors are. Superconductors are special materials that conduct electrical current with almost zero resistance. This means that there is little or no need for a voltage source to be connected to them. As a matter of fact, once a superconductor is connected to a power supply, one can remove the power supply and the current will still flow.
However, most superconducts can only conduct at very low temperatures up to -200 degrees Celcius. This is because, at that temperature, their atoms and molecules are relatively settled, hence they pose little or no resistance to the flow of current.
This as you can guess is extremely difficult to do, as you will need a lot of effort to cool it to that temperature and maintain it.
This makes option a the answer:
The cost of keeping the semiconductor below the critical temperature is unreasonable.
A proton travels through a constant magnetic field in the negative y-direction while moving in the negative x-direction. The proton will be subject to a magnetic pull that is directed into the page. Option B is correct.
<h3>What is the right-hand thumb rule?</h3>
Hold a current-carrying conductor in your right hand with your thumb pointing in the direction of the current then wrap your fingers around the conductor and orient them in the direction of the magnetic field lines.
A proton travels through a constant magnetic field in the negative y-direction while moving in the negative x-direction.
The proton will be subject to a magnetic pull that is directed into the page.
Hence, option B is correct.
To learn more about the right-hand thumb rule refer to the link;
brainly.com/question/11521829
#SPJ1
(a) The work done by the applied force is 26.65 J.
(b) The work done by the normal force exerted by the table is 0.
(c) The work done by the force of gravity is 0.
(d) The work done by the net force on the block is 26.65 J.
<h3>
Work done by the applied force</h3>
W = Fdcosθ
W = 14 x 2.1 x cos25
W = 26.65 J
<h3>
Work done by the normal force</h3>
W = Fₙd
W = mg cosθ x d
W = (2.5 x 9.8) x cos(90) x 2.1
W = 0 J
<h3>Work done force of gravity</h3>
The work done by force of gravity is also zero, since the weight is at 90⁰ to the displacement.
<h3> Work done by the net force on the block</h3>
∑W = 0 + 26.65 J = 26.65 J
Thus, the work done by the applied force is 26.65 J.
The work done by the normal force exerted by the table is 0.
The work done by the force of gravity is 0.
The work done by the net force on the block is 26.65 J.
Learn more about work done here: brainly.com/question/8119756
#SPJ1
I agree with the other comment