Answer:
4 seconds
Explanation:
Given:
v₀ = 20 m/s
v = 0 m/s
a = -5 m/s²
Find: t
v = at + v₀
0 m/s = (-5 m/s²) t + 20 m/s
t = 4 s
Answer:
375 m.
Explanation:
From the question,
Work done by the frictional force = Kinetic energy of the object
F×d = 1/2m(v²-u²)..................... Equation 1
Where F = Force of friction, d = distance it slide before coming to rest, m = mass of the object, u = initial speed of the object, v = final speed of the object.
Make d the subject of the equation.
d = 1/2m(v²-u²)/F.................. Equation 2
Given: m = 60.0 kg, v = 0 m/s(coming to rest), u = 25 m/s, F = -50 N.
Note: If is negative because it tends to oppose the motion of the object.
Substitute into equation 2
d = 1/2(60)(0²-25²)/-50
d = 30(-625)/-50
d = -18750/-50
d = 375 m.
Hence the it will slide before coming to rest = 375 m
It can be Strontium Iodide
Answer:
The number of turns, N = 1750
Explanation:
It is given that,
The inner radius of a toroid, r = 12 cm
Outer radius, r' = 15 cm
The magnetic field at points within the coils 14 cm from its center is,
R = 14 cm = 0.14 m
Current, I = 1.5 A
The formula for the magnetic field at some distance from its center is given by :
N = 1750
So, the number of turns must have in a toroidal solenoid is 1750. Hence, this is the required solution.
The electric force exerted by an electric field of intensity E on a charge q is equal to the product between E and q, so: